\(f : x \to 4x - 1\)
\(f : x \to 4x + 1\)
\(f : x \to \frac{4x - 1}{4}\)
\(f : x \to \frac{x - 1}{2}\)
Correct answer is A
The inverse of the inverse of a function gives the function
i.e \(f^{-1}(f^{-1}(x)) = f(x)\)
\(f^{-1}(x) = \frac{x + 1}{4}\)
Take y = x, so
\(f^{-1}(y) = \frac{y + 1}{4}\)
Let \(x = f^{-1}(y)\),
\(x = \frac{y + 1}{4} \implies 4x = y + 1\)
\(y = f(x) = 4x - 1\)
Find the gradient to the normal of the curve \(y = x^{3} - x^{2}\) at the point where x = 2....
Evaluate \(\int_{1}^{2} [\frac{x^{3} - 1}{x^{2}}] \mathrm {d} x\)...
If \(2\log_{4} 2 = x + 1\), find the value of x....
If \(y = 4x - 1\), list the range of the domain \({-2 \leq x \leq 2}\), where x is an integer....