\(1- \frac{1}{2}\sqrt{3}\)
\(1+ \frac{1}{2}\sqrt{3}\)
\(\sqrt{3}\)
\(1+\sqrt{3}\)
Correct answer is B
\(\frac{1}{(1-\sqrt{3})^{2}}\)
\((1-\sqrt{3})^{2} = (1-\sqrt{3})(1-\sqrt{3})\)
\(1 - 2\sqrt{3} + 3 = 4 - 2\sqrt{3}\)
\(\frac{1}{4-2\sqrt{3}}\)
After rationalising (multiplying the denominator and numerator with \(4+2\sqrt{3}\), we have
\(\frac{4+2\sqrt{3}}{4} = 1 + \frac{1}{2}\sqrt{3}\)
Given that r = (10 N , 200º) and n = (16 N , 020º), find (3r - 2n). ...
If \(f(x) = 3x^{3} + 8x^{2} + 6x + k\) and \(f(2) = 1\), find the value of k....
Marks 2 3 4 5 6 7 8 No of students 5 7 9 6 3 6 4 The table above sho...
If \(y = \frac{1+x}{1-x}\), find \(\frac{dy}{dx}\)....
Find the coordinates of the centre of the circle 3x\(^2\) + 3y\(^2\) - 6x + 9y - 5 = 0...
Given that M is the midpoint of T (2, 4) and Q (-8, 6), find the length of MQ . ...
Given that X : R \(\to\) R is defined by x = \(\frac{y + 1}{5 - y}\) , y \(\in\) R, find ...
If \(P = \begin{pmatrix} 1 & 2 \\ 5 & 1 \end{pmatrix}\) and \(Q = \begin{pmatrix} 0 & 1 ...
Determine the coefficient of x\(^3\) in the binomial expansion of ( 1 + \(\frac{1}{2}\)x) ...