\(1- \frac{1}{2}\sqrt{3}\)
\(1+ \frac{1}{2}\sqrt{3}\)
\(\sqrt{3}\)
\(1+\sqrt{3}\)
Correct answer is B
\(\frac{1}{(1-\sqrt{3})^{2}}\)
\((1-\sqrt{3})^{2} = (1-\sqrt{3})(1-\sqrt{3})\)
\(1 - 2\sqrt{3} + 3 = 4 - 2\sqrt{3}\)
\(\frac{1}{4-2\sqrt{3}}\)
After rationalising (multiplying the denominator and numerator with \(4+2\sqrt{3}\), we have
\(\frac{4+2\sqrt{3}}{4} = 1 + \frac{1}{2}\sqrt{3}\)
If \(P = {x : -2 < x < 5}\) and \(Q = {x : -5 < x < 2}\) are subsets of \(\mu = {x : -5 ...
If the mean of 2, 5, (x + 1), (x + 2), 7 and 9 is 6, find the median. ...
Find \(\int \frac{x^{3} + 5x + 1}{x^{3}} \mathrm {d} x\)...
The length of the line joining points (x,4) and (-x,3) is 7 units. Find the value of x. ...
Find the inverse of \(\begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}\)...
Given that \(y = x(x + 1)^{2}\), calculate the maximum value of y....