Simplify \(\frac{1}{(1-\sqrt{3})^{2}}\)

A.

\(1- \frac{1}{2}\sqrt{3}\)

B.

\(1+ \frac{1}{2}\sqrt{3}\)

C.

\(\sqrt{3}\)

D.

\(1+\sqrt{3}\)

Correct answer is B

\(\frac{1}{(1-\sqrt{3})^{2}}\) 

\((1-\sqrt{3})^{2} = (1-\sqrt{3})(1-\sqrt{3})\)

\(1 - 2\sqrt{3} + 3 = 4 - 2\sqrt{3}\)

\(\frac{1}{4-2\sqrt{3}}\)

After rationalising (multiplying the denominator and numerator with \(4+2\sqrt{3}\), we have

\(\frac{4+2\sqrt{3}}{4} = 1 + \frac{1}{2}\sqrt{3}\)