\(f^{-1} : x \to \frac{1+2x}{2-x}, x \neq 2\)
\(f^{-1} : x \to \frac{1-2x}{x+2}, x \neq -2\)
\(f^{-1} : x \to \frac{1-2x}{x-2}, x \neq 2\)
\(f^{-1} : x \to \frac{1+2x}{x+2}, x \neq -2\)
Correct answer is A
\(f(x) = \frac{2x - 1}{x + 2}\)
\(y = \frac{2x - 1}{x + 2}\)
\(x = \frac{2y - 1}{y + 2} \implies x(y + 2) = 2y - 1\)
\(xy - 2y = -1 - 2x \implies y = \frac{-1 - 2x}{x - 2}\)
\(f^{-1} : x \to \frac{1 + 2x}{2 - x} ; x \neq 2\)
Find the unit vector in the direction of \(-2i + 5j\)....
Find the angle between forces of magnitude 7N and 4N if their resultant has a magnitude of 9N. ...
A binary operation ♦ is defined on the set R, of real numbers by \(a ♦ b = \fr...
If \(\begin{vmatrix} 3 & x \\ 2 & x - 2 \end{vmatrix} = -2\), find the value of x....
Simplify \(\frac{^{n}P_{3}}{^{n}C_{2}} + ^{n}P_{0}\)...
If P = \(\begin {pmatrix} 2 & 3\\ -4 & 1 \end {pmatrix}\), Q = \(\begin{pmat...