\(\frac{1}{3}(x - \frac{1}{x})^{3} + c\)
\(\frac{x^{3}}{3} - x\sqrt{\frac{1}{x^{3}}} + c\)
\(\frac{x^{3}}{3} - 2x + \frac{1}{x^{3}} + c\)
\(\frac{x^3}{3} - 2x - \frac{1}{x} + c\)
Correct answer is D
\((x - \frac{1}{x})^{2} = x^2 - 2 + \frac{1}{x^2}\)
\(\int (x^2 + \frac{1}{x^2} - 2) \mathrm {d} x\)
= \(\int (x^2 + x^{-2} - 2) \mathrm {d} x\)
= \(\frac{x^3}{3} - 2x - \frac{1}{x}\)
Solve (\(\frac{1}{9}\))\(^{x + 2}\) = 243\(^{x - 2}\) ...
If V = plog\(_x\), (M + N), express N in terms of X, P, M and V...
Given that \(\sin x = \frac{-\sqrt{3}}{2}\) and \(\cos x > 0\), find x...
The third of geometric progression (G.P) is 10 and the sixth term is 80. Find the common ratio. ...