\(\frac{1}{\sqrt{29}}(2i + 5j)\)
\(\frac{1}{\sqrt{29}}(-2i + 5j)\)
\(\frac{1}{29}(2i - 5j)\)
\(\frac{1}{29}(-2i - 5j)\)
Correct answer is B
The unit vector, \(\hat{n}\) is given by \(\hat{n} = \frac{\overrightarrow{r}}{|\overrightarrow{r}|}\)
= \(\frac{(-2i + 5j)}{\sqrt{(-2)^{2} + 5^{2}}} = \frac{(-2i + 5j)}{\sqrt{29}}\)
= \(\frac{1}{\sqrt{29}}(-2i + 5j)\)
If \(f(x) = 2x^{2} - 3x - 1\), find the value of x for which f(x) is minimum....
Express cos150° in surd form. ...
For what value of k is 4x\(^2\) - 12x + k, a perfect square?...
Find the coordinates of the centre of the circle \(3x^{2}+3y^{2} - 4x + 8y -2=0\)...
A particle moving with a velocity of 5m/s accelerates at 2m/s\(^2\). Find the distance it cover...