Home / Aptitude Tests / Further Mathematics / If \(36, p, \frac{9}...
If \(36, p, \frac{9}{4}, q\) are consecutive terms of an exp...

If \(36, p, \frac{9}{4}, q\) are consecutive terms of an exponential sequence (G.P.). Find the sum of p and q.

A.

\(\frac{9}{16}\)

B.

\(\frac{81}{16}\)

C.

\(9\)

D.

\(9\frac{9}{16}\)

Correct answer is D

\(T_{n} = ar^{n-1}\) (for an exponential sequence)

\(T_{1} = 36 = a\)

\(T_{2} = ar = 36r = p\)

\(T_{3} = ar^{2} = 36r^{2} = \frac{9}{4}\)

\(T_{4} = ar^{3} = 36r^{3} = q\)

\(36r^{2} = \frac{9}{4} \implies r^{2} = \frac{\frac{9}{4}}{36} = \frac{1}{16}\)

\(r = \sqrt{\frac{1}{16}} = \frac{1}{4}\)

\( p = 36 \times \frac{1}{4} = 9 ; q = \frac{9}{4} \times \frac{1}{4} = \frac{9}{16}\)

\(p + q = 9 + \frac{9}{16} = 9\frac{9}{16}\)