Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

226.

The mean age of n men in a club is 50 years. Two men aged 55 and 63 years left the club, and the mean age reduced by 1 year. Find the value of n.

A.

30

B.

20

C.

18

D.

14

Correct answer is B

Let the sum of the men's ages be f, so that

\(\frac{f}{n} = 50 .... (1)\)

Also, \(\frac{f - (55 + 63)}{n - 2} = 50 - 1 = 49 .... (2)\)

From (1), \(f = 50n\)

From (2), \(f - 118 = 49(n - 2) = 49n - 98\)

\(f = 49n - 98 + 118 = 49n + 20\)

\(\therefore f = 50n = 49n + 20\)

\(50n - 49n = n = 20\)

227.

Evaluate \(\lim \limits_{x \to 1} \frac{1 - x}{x^{2} - 3x + 2}\)

A.

1

B.

\(\frac{1}{2}\)

C.

0

D.

-1

Correct answer is A

\(\lim \limits_{x \to 1} \frac{1 - x}{x^{2} - 3x + 2}\)

\(\frac{1 - x}{x^{2} - 3x + 2} = \frac{-(x - 1)}{(x - 1)(x - 2)}\)

= \(\frac{-1}{x - 2}\)

\(\lim \limits_{x \to 1} \frac{1 - x}{x^{2} - 3x + 2} = \lim \limits_{x \to 1} \frac{-1}{x - 2}\)

= \(\frac{-1}{1 - 2} = \frac{-1}{-1} = 1\)

228.

Evaluate \(\log_{0.25} 8\)

A.

\(\frac{3}{2}\)

B.

\(\frac{2}{3}\)

C.

\(-\frac{2}{3}\)

D.

\(-\frac{3}{2}\)

Correct answer is D

\(\log_{0.25} 8 = x\)

\(8 = 0.25^{x}\)

\(2^{3} = (2^{-2})^{x} \implies 3 = -2x\)

\(x = -\frac{3}{2}\)

229.

Find the sum of the exponential series \(96 + 24 + 6 +...\)

A.

144

B.

128

C.

72

D.

64

Correct answer is B

\(S_{\infty} = \frac{a}{1 - r}\) (for an exponential series)

\(r = \frac{24}{96} = \frac{6}{24} = \frac{1}{4}\)

\(S_{\infty} = \frac{96}{1 - \frac{1}{4}} = \frac{96}{\frac{3}{4}}\)

= \(\frac{96 \times 4}{3} = 128\)

230.

The roots of the equation \(2x^{2} + kx + 5 = 0\) are \(\alpha\) and \(\beta\), where k is a constant. If \(\alpha^{2} + \beta^{2} = -1\), find the values of k.

A.

\(\pm 16\)

B.

\(\pm 8\)

C.

\(\pm 4\)

D.

\(\pm 2\)

Correct answer is C

\(2x^{2} + kx + 5 = 0\)

\(\alpha + \beta = \frac{-b}{a} = \frac{-k}{2}\)

\(\alpha \beta = \frac{c}{a} = \frac{5}{2}\)

\(\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha \beta\)

\(-1 = (\frac{-k}{2})^{2} - 2(\frac{5}{2})\)

\(-1 = \frac{k^{2}}{4} - 5 \implies \frac{k^{2}}{4} = 4\)

\(k^{2} = 16 \therefore k = \pm 4\)