Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.
30
20
18
14
Correct answer is B
Let the sum of the men's ages be f, so that
\(\frac{f}{n} = 50 .... (1)\)
Also, \(\frac{f - (55 + 63)}{n - 2} = 50 - 1 = 49 .... (2)\)
From (1), \(f = 50n\)
From (2), \(f - 118 = 49(n - 2) = 49n - 98\)
\(f = 49n - 98 + 118 = 49n + 20\)
\(\therefore f = 50n = 49n + 20\)
\(50n - 49n = n = 20\)
Evaluate \(\lim \limits_{x \to 1} \frac{1 - x}{x^{2} - 3x + 2}\)
1
\(\frac{1}{2}\)
0
-1
Correct answer is A
\(\lim \limits_{x \to 1} \frac{1 - x}{x^{2} - 3x + 2}\)
\(\frac{1 - x}{x^{2} - 3x + 2} = \frac{-(x - 1)}{(x - 1)(x - 2)}\)
= \(\frac{-1}{x - 2}\)
\(\lim \limits_{x \to 1} \frac{1 - x}{x^{2} - 3x + 2} = \lim \limits_{x \to 1} \frac{-1}{x - 2}\)
= \(\frac{-1}{1 - 2} = \frac{-1}{-1} = 1\)
\(\frac{3}{2}\)
\(\frac{2}{3}\)
\(-\frac{2}{3}\)
\(-\frac{3}{2}\)
Correct answer is D
\(\log_{0.25} 8 = x\)
\(8 = 0.25^{x}\)
\(2^{3} = (2^{-2})^{x} \implies 3 = -2x\)
\(x = -\frac{3}{2}\)
Find the sum of the exponential series \(96 + 24 + 6 +...\)
144
128
72
64
Correct answer is B
\(S_{\infty} = \frac{a}{1 - r}\) (for an exponential series)
\(r = \frac{24}{96} = \frac{6}{24} = \frac{1}{4}\)
\(S_{\infty} = \frac{96}{1 - \frac{1}{4}} = \frac{96}{\frac{3}{4}}\)
= \(\frac{96 \times 4}{3} = 128\)
\(\pm 16\)
\(\pm 8\)
\(\pm 4\)
\(\pm 2\)
Correct answer is C
\(2x^{2} + kx + 5 = 0\)
\(\alpha + \beta = \frac{-b}{a} = \frac{-k}{2}\)
\(\alpha \beta = \frac{c}{a} = \frac{5}{2}\)
\(\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha \beta\)
\(-1 = (\frac{-k}{2})^{2} - 2(\frac{5}{2})\)
\(-1 = \frac{k^{2}}{4} - 5 \implies \frac{k^{2}}{4} = 4\)
\(k^{2} = 16 \therefore k = \pm 4\)