Processing math: 0%
Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

226.

Evaluate lim

A.

1

B.

\frac{1}{2}

C.

0

D.

-1

Correct answer is A

\lim \limits_{x \to 1} \frac{1 - x}{x^{2} - 3x + 2}

\frac{1 - x}{x^{2} - 3x + 2} = \frac{-(x - 1)}{(x - 1)(x - 2)}

= \frac{-1}{x - 2}

\lim \limits_{x \to 1} \frac{1 - x}{x^{2} - 3x + 2} = \lim \limits_{x \to 1} \frac{-1}{x - 2}

= \frac{-1}{1 - 2} = \frac{-1}{-1} = 1

227.

Evaluate \log_{0.25} 8

A.

\frac{3}{2}

B.

\frac{2}{3}

C.

-\frac{2}{3}

D.

-\frac{3}{2}

Correct answer is D

\log_{0.25} 8 = x

8 = 0.25^{x}

2^{3} = (2^{-2})^{x} \implies 3 = -2x

x = -\frac{3}{2}

228.

Find the sum of the exponential series 96 + 24 + 6 +...

A.

144

B.

128

C.

72

D.

64

Correct answer is B

S_{\infty} = \frac{a}{1 - r} (for an exponential series)

r = \frac{24}{96} = \frac{6}{24} = \frac{1}{4}

S_{\infty} = \frac{96}{1 - \frac{1}{4}} = \frac{96}{\frac{3}{4}}

= \frac{96 \times 4}{3} = 128

229.

The roots of the equation 2x^{2} + kx + 5 = 0 are \alpha and \beta, where k is a constant. If \alpha^{2} + \beta^{2} = -1, find the values of k.

A.

\pm 16

B.

\pm 8

C.

\pm 4

D.

\pm 2

Correct answer is C

2x^{2} + kx + 5 = 0

\alpha + \beta = \frac{-b}{a} = \frac{-k}{2}

\alpha \beta = \frac{c}{a} = \frac{5}{2}

\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha \beta

-1 = (\frac{-k}{2})^{2} - 2(\frac{5}{2})

-1 = \frac{k^{2}}{4} - 5 \implies \frac{k^{2}}{4} = 4

k^{2} = 16 \therefore k = \pm 4

230.

Find the equation of the line passing through (0, -1) and parallel to the y- axis.

A.

y = -1

B.

y = 0

C.

x = 0

D.

x = -1

Correct answer is C

No explanation has been provided for this answer.