Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

211.

A and B are two independent events such that \(P(A) = \frac{2}{5}\) and \(P(A \cap B) = \frac{1}{15}\). Find \(P(B)\)

A.

\(\frac{3}{5}\)

B.

\(\frac{1}{3}\)

C.

\(\frac{1}{6}\)

D.

\(\frac{2}{15}\)

Correct answer is C

For independent events A and B, \(P(A \cap B) = P(A) \times P(B)\)

\(\frac{1}{15} = \frac{2}{5} \times P(B)\)

\(P(B) = \frac{1}{15} \div \frac{2}{5}\)

\(P(B) = \frac{1}{6}\)

212.

Find the coordinates of the centre of the circle \(4x^{2} + 4y^{2} - 5x + 3y - 2 = 0\).

A.

\((\frac{-5}{4}, \frac{3}{4})\)

B.

\((\frac{3}{8}, -\frac{5}{8})\)

C.

\((\frac{5}{8}, -\frac{3}{8})\)

D.

\((\frac{5}{4}, -\frac{3}{4})\)

Correct answer is C

Equation : \((x - a)^{2} + (y - b)^{2} = r^{2}\)

Expanding : \(x^{2} + y^{2} - 2ax - 2by + a^{2} + b^{2} = r^{2}\)

Given, \(4x^{2} + 4y^{2} - 5x + 3y - 2 = 0\)

Divide through by 4 to make the coefficient of \(x^{2}\) and \(y^{2}\) to be 1.

\(x^{2} + y^{2} - \frac{5}{4}x + \frac{3}{4}y - \frac{1}{2} = 0\)

Comparing, \(2a = \frac{5}{4} \implies a = \frac{5}{8}\)

\(2b = -\frac{3}{4} \implies b = -\frac{3}{8}\)

\((a, b) = (\frac{5}{8}, -\frac{5}{8})\)

213.

Given that \(\begin{pmatrix} 1 & -3 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} -6 \\ P \end{pmatrix} = \begin{pmatrix} 3 \\ -26 \end{pmatrix}\), find the value of P.

A.

-8

B.

-5

C.

4

D.

-3

Correct answer is D

\(\begin{pmatrix} 1 & -3 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} -6 \\ P \end{pmatrix} = \begin{pmatrix} 3 \\ -26 \end{pmatrix}\)

\(\implies (1 \times -6) + (-3 \times P) = 3\)

\(-6 - 3P = 3 \implies -3P = 9\)

\(P = -3\)

215.

Find the least value of the function \(f(x) = 3x^{2} + 18x + 32\)

A.

5

B.

4

C.

-3

D.

-2

Correct answer is A

\(f(x) = 3x^{2} + 18x + 32\)

\(\frac{\mathrm d y}{\mathrm d x} = 6x + 18 = 0\)

\(6x = -18 \implies x = -3\)

\(f(-3) = 3(-3^{2}) + 18(-3) + 32 = 27 - 54 + 32 = 5\)