\(\pm 16\)
\(\pm 8\)
\(\pm 4\)
\(\pm 2\)
Correct answer is C
\(2x^{2} + kx + 5 = 0\)
\(\alpha + \beta = \frac{-b}{a} = \frac{-k}{2}\)
\(\alpha \beta = \frac{c}{a} = \frac{5}{2}\)
\(\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha \beta\)
\(-1 = (\frac{-k}{2})^{2} - 2(\frac{5}{2})\)
\(-1 = \frac{k^{2}}{4} - 5 \implies \frac{k^{2}}{4} = 4\)
\(k^{2} = 16 \therefore k = \pm 4\)
If \(\sin\theta = \frac{3}{5}, 0° < \theta < 90°\), evaluate \(\cos(180 - \theta)\)....
Simplify \(\frac{\sqrt{128}}{\sqrt{32} - 2\sqrt{2}}\)...
Find the value of p for which \(x^{2} - x + p\) becomes a perfect square. ...
Given that \(q = 9i + 6j\) and \(r = 4i - 6j\), which of the following statements is true?...
Given that \(P = \begin{pmatrix} -2 & 1 \\ 3 & 4 \end{pmatrix}\) and \(Q = \begin{pmatrix} 5...
The inverse of a function is given by \(f^{-1} : x \to \frac{x + 1}{4}\)....