Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

236.

Two functions f and g are defined by \(f : x \to 3x - 1\) and \(g : x \to 2x^{3}\), evaluate \(fg(-2)\)

A.

-49

B.

-47

C.

-10

D.

-9

Correct answer is A

\(g : x \to 2x^{3}\)

\(g(-2) = 2(-2^{3}) = 2(-8) = -16\)

\(f : x \to 3x - 1\)

\(f(-16) = 3(-16) -1 = -48 - 1 = - 49\)

237.

If \((x - 3)\) is a factor of \(2x^{3} + 3x^{2} - 17x - 30\), find the remaining factors.

A.

(2x - 5)(x - 2)

B.

(2x - 5)(x + 2)

C.

(2x + 5)(x - 2)

D.

(2x + 5)(x + 2)

Correct answer is D

Divide \(2x^{3} + 3x^{2} - 17x - 30\) by \((x - 3)\). You get \(2x^{2} + 9x + 10\).

Factorizing, we have \(2x^{2} + 9x + 10 = 2x^{2} + 4x + 5x + 10\)

\(2x(x + 2) + 5(x + 2)\)

= \((2x + 5)(x + 2)\)

238.

A binary operation ♦ is defined on the set R, of real numbers by \(a ♦ b = \frac{ab}{4}\). Find the value of \(\sqrt{2} ♦ \sqrt{6}\)

A.

\(\sqrt{3}\)

B.

\(\frac{3\sqrt{2}}{4}\)

C.

\(\frac{\sqrt{3}}{2}\)

D.

\(\frac{\sqrt{2}}{2}\)

Correct answer is C

\(a ♦ b = \frac{ab}{4}\)

\(\sqrt{2} ♦ \sqrt{6} = \frac{\sqrt{2} \times \sqrt{6}}{4} = \frac{\sqrt{12}}{4}\)

= \(\frac{2\sqrt{3}}{4} \)

= \(\frac{\sqrt{3}}{2}\)

239.

Simplify \(\sqrt{(\frac{-1}{64})^{\frac{-2}{3}}}\)

A.

-4

B.

\(-\frac{1}{4}\)

C.

\(\frac{1}{8}\)

D.

4

Correct answer is D

\((\frac{-1}{64})^{\frac{-2}{3}} = -64^{\frac{2}{3}}\)

\((-4^{3})^{\frac{2}{3}} = -4^{2} = 16\)

\(\therefore \sqrt{(\frac{-1}{64})^{\frac{-2}{3}} = \sqrt{16} = 4\)

240.

Solve the inequality \(2x^{2} + 5x - 3 \geq 0\).

A.

\(x \leq -3\) or \(x \geq \frac{1}{2}\)

B.

\(x < -\frac{1}{2}\) or \(x \geq 3\)

C.

\(-3 \leq x \leq \frac{1}{2}\)

D.

\(-\frac{1}{2} \leq x \leq 3\)

Correct answer is A

No explanation has been provided for this answer.