1
\(\frac{1}{2}\)
0
-1
Correct answer is A
\(\lim \limits_{x \to 1} \frac{1 - x}{x^{2} - 3x + 2}\)
\(\frac{1 - x}{x^{2} - 3x + 2} = \frac{-(x - 1)}{(x - 1)(x - 2)}\)
= \(\frac{-1}{x - 2}\)
\(\lim \limits_{x \to 1} \frac{1 - x}{x^{2} - 3x + 2} = \lim \limits_{x \to 1} \frac{-1}{x - 2}\)
= \(\frac{-1}{1 - 2} = \frac{-1}{-1} = 1\)
Evaluate \(\int_{1}^{2} \frac{4}{x^{3}} \mathrm {d} x\)...
If \(\begin{pmatrix} 3 & 2 \\ 7 & x \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \be...
Find the equation of the line passing through (0, -1) and parallel to the y- axis. ...
The table shows the distribution of marks obtained by some students in a test Marks 0-9 10-...
The sum, \(S_{n}\), of a sequence is given by \(S_{n} = 2n^{2} - 5\). Find the 6th term...
In what interval is the function f : x -> 2x - x\(^2\) increasing? ...
Three forces, F\(_1\) (8N, 030°), F\(_\2) (10N, 150° ) and F\(_\3) ( KN, 240° ...