1
\(\frac{1}{2}\)
0
-1
Correct answer is A
\(\lim \limits_{x \to 1} \frac{1 - x}{x^{2} - 3x + 2}\)
\(\frac{1 - x}{x^{2} - 3x + 2} = \frac{-(x - 1)}{(x - 1)(x - 2)}\)
= \(\frac{-1}{x - 2}\)
\(\lim \limits_{x \to 1} \frac{1 - x}{x^{2} - 3x + 2} = \lim \limits_{x \to 1} \frac{-1}{x - 2}\)
= \(\frac{-1}{1 - 2} = \frac{-1}{-1} = 1\)
If 2i +pj and 4i -2j are perpendicular, find the value of p. ...
Evaluate \(\int_{1}^{2} \frac{4}{x^{3}} \mathrm {d} x\)...
Find the coordinates of the centre of the circle 3x\(^2\) + 3y\(^2\) - 6x + 9y - 5 = 0...
Solve \(x^{2} - 2x - 8 > 0\)....
If \(\log_{3} x = \log_{9} 3\), find the value of x....
The fourth term of a geometric sequence is 2 and the sixth term is 8. Find the common ratio. ...