Evaluate \(\lim \limits_{x \to 1} \frac{1 - x}{x^{2} - 3x + 2}\)

A.

1

B.

\(\frac{1}{2}\)

C.

0

D.

-1

Correct answer is A

\(\lim \limits_{x \to 1} \frac{1 - x}{x^{2} - 3x + 2}\)

\(\frac{1 - x}{x^{2} - 3x + 2} = \frac{-(x - 1)}{(x - 1)(x - 2)}\)

= \(\frac{-1}{x - 2}\)

\(\lim \limits_{x \to 1} \frac{1 - x}{x^{2} - 3x + 2} = \lim \limits_{x \to 1} \frac{-1}{x - 2}\)

= \(\frac{-1}{1 - 2} = \frac{-1}{-1} = 1\)