1
\frac{1}{2}
0
-1
Correct answer is A
\lim \limits_{x \to 1} \frac{1 - x}{x^{2} - 3x + 2}
\frac{1 - x}{x^{2} - 3x + 2} = \frac{-(x - 1)}{(x - 1)(x - 2)}
= \frac{-1}{x - 2}
\lim \limits_{x \to 1} \frac{1 - x}{x^{2} - 3x + 2} = \lim \limits_{x \to 1} \frac{-1}{x - 2}
= \frac{-1}{1 - 2} = \frac{-1}{-1} = 1
If y^{2} + xy - x = 0, find \frac{\mathrm d y}{\mathrm d x}....
Given \(\begin{vmatrix} 2 & -3 \\ 1 & 4 \end{vmatrix} \begin{vmatrix} -6 \\ k...
Evaluate \lim \limits_{x \to 3} \frac{x^{2} - 2x - 3}{x - 3}...
If x = i - 3j and y = 6i + j, calculate the angle between x and y...
A fair die is tossed twice. Find the probability of obtaining a 3 and a 5. ...