\((\frac{-5}{4}, \frac{3}{4})\)
\((\frac{3}{8}, -\frac{5}{8})\)
\((\frac{5}{8}, -\frac{3}{8})\)
\((\frac{5}{4}, -\frac{3}{4})\)
Correct answer is C
Equation : \((x - a)^{2} + (y - b)^{2} = r^{2}\)
Expanding : \(x^{2} + y^{2} - 2ax - 2by + a^{2} + b^{2} = r^{2}\)
Given, \(4x^{2} + 4y^{2} - 5x + 3y - 2 = 0\)
Divide through by 4 to make the coefficient of \(x^{2}\) and \(y^{2}\) to be 1.
\(x^{2} + y^{2} - \frac{5}{4}x + \frac{3}{4}y - \frac{1}{2} = 0\)
Comparing, \(2a = \frac{5}{4} \implies a = \frac{5}{8}\)
\(2b = -\frac{3}{4} \implies b = -\frac{3}{8}\)
\((a, b) = (\frac{5}{8}, -\frac{5}{8})\)
If \(2\sin^{2}\theta = 1 + \cos \theta, 0° \leq \theta \leq 90°\), find \(\theta\)...
Evaluate \(\lim \limits_{x \to 1} \frac{1 - x}{x^{2} - 3x + 2}\)...
Simplify \(\frac{1 + \sqrt{8}}{3 - \sqrt{2}}\)...
Simplify \(\frac{\sqrt{128}}{\sqrt{32} - 2\sqrt{2}}\)...
In which of the following series can be the formula S = \(\frac{a}{1 - r}\) where a is the firs...
Given that \(x * y = \frac{x + y}{2}, x \circ y = \frac{x^{2}}{y}\) and \((3 * b) \circ&nb...
Find the coefficient of \(x^{4}\) in the binomial expansion of \((2 + x)^{6}\)...
Find the coefficient of \(x^{3}\) in the expansion of \([\frac{1}{3}(2 + x)]^{6}\)...