Express cos150° in surd form.
...Express cos150° in surd form.
\(-\sqrt{3}\)
\(-\frac{\sqrt{3}}{2}\)
\(-\frac{1}{2}\)
\(\frac{\sqrt{2}}{2}\)
Correct answer is B
cos150° = -cos30°
= \(-\frac{\sqrt{3}}{2}\)
Find the coordinates of the centre of the circle 3x\(^2\) + 3y\(^2\) - 6x + 9y - 5 = 0...
Solve: \(4(2^{x^2}) = 8^{x}\)...
Evaluate \(\int_{\frac{1}{2}}^{1} \frac{x^{3} - 4}{x^{3}} \mathrm {d} x\)....
Find the angle between forces of magnitude 7N and 4N if their resultant has a magnitude of 9N. ...
Simplify: \(\frac{\cos 2\theta - 1}{\sin 2\theta}\)...
Solve \(x^{2} - 2x - 8 > 0\)....
If Un = kn\(^2\) + pn, U\(_1\) = -1, U\(_5\) = 15, find the values of k and p....