\(\frac{-9}{8}\)
\(\frac{-7}{8}\)
\(\frac{7}{8}\)
\(\frac{9}{8}\)
Correct answer is B
\(\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^{2} + \beta^{2}}{\alpha\beta}\)
\(\alpha + \beta = \frac{-b}{a}\); \(\alpha\beta = \frac{c}{a}\)
\(\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2(\alpha\beta)\)
From the equation, a = 2, b = -3, c =4
\(\alpha + \beta = \frac{-(-3)}{2} = \frac{3}{2}\)
\(\alpha\beta = \frac{4}{2} = 2\)
\(\alpha^{2} + \beta^{2} = (\frac{3}{2})^{2} - 2(2)) = \frac{9}{4} - 4 = \frac{-7}{4}\)
\(\implies \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\frac{-7}{4}}{2} = \frac{-7}{8}\)
Find the coefficient of the \(6^{th}term\) in the binomial expansion of \((1 - \frac{2x}{3})10\...
Three forces \(F_{1} = (8 N, 300°), F_{2} = (6 N, 090°)\) and \(F_{3} = (4 N, 180°)\) ac...
Factorize completely: \(x^{2} + x^{2}y + 3x - 10y + 3xy - 10\)....
Find the variance of 1, 2, 0, -3, 5, -2, 4....
Simplify: \((1 - \sin \theta)(1 + \sin \theta)\)...
In how many ways can six persons be paired? ...
If \(\sin\theta = \frac{3}{5}, 0° < \theta < 90°\), evaluate \(\cos(180 - \theta)\)....