\(\begin{pmatrix} 9 \\ -5 \end{pmatrix}\)
\(\begin{pmatrix} -23 \\ -5 \end{pmatrix}\)
\(\begin{pmatrix} 9 \\ 17 \end{pmatrix}\)
\(\begin{pmatrix} -23 \\ 17 \end{pmatrix}\)
Correct answer is D
\(\overrightarrow{OY} \equiv -\overrightarrow{YO}\)
Also, \(\overrightarrow{YO} + \overrightarrow{OX} = \overrightarrow{YX}\)
\(\therefore \overrightarrow{YO} = -\overrightarrow{OY} = - \begin{pmatrix} 16 \\ -11 \end{pmatrix} = \begin{pmatrix} -16 \\ 11 \end{pmatrix}\)
\(\overrightarrow{YX} = \begin{pmatrix} -16 \\ 11 \end{pmatrix} + \begin{pmatrix} -7 \\ 6 \end{pmatrix}\)
= \(\begin{pmatrix} -23 \\ 17 \end{pmatrix}\)
P, Q, R, S are points in a plane such that PQ = 8i - 5j, QR = 5i + 7j, RS = 7i + 3j and PS = x...
Express the force F = (8 N, 150°) in the form (a i + b j) where a and b are constants ...
Find the constant term in the binomial expansion of \((2x - \frac{3}{x})^{8}\)....
Find the 3rd term of \((\frac{x}{2} - 1)^{8}\) in descending order of x....
Find the sum of the exponential series \(96 + 24 + 6 +...\)...
Evaluate \(\frac{1}{1 - \sin 60°}\), leaving your answer in surd form....
If \(2\log_{4} 2 = x + 1\), find the value of x....
Given that \(f '(x) = 3x^{2} - 6x + 1\) and f(3) = 5, find f(x)....
If \(\log_{10}y + 3\log_{10}x \geq \log_{10}x\), express y in terms of x....
Given that P = (-4, -5) and Q = (2,3), express →PQ in the form (k,θ). where k is the magn...