Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

581.

Given the statements:

p : the subject is difficult

q : I will do my best

Which of the following is equivalent to 'Although the subject is difficult, I will do my best'?

A.

\(p \vee q\)

B.

\(\sim p \vee q\)

C.

\(p \wedge (\sim q)\)

D.

\( p \wedge q\)

Correct answer is D

No explanation has been provided for this answer.

582.

Given that \(x^{2} + 4x + k = (x + r)^{2} + 1\), find the value of k and r

A.

k = 5, r = -1

B.

k = 5, r = 2

C.

k = 2, r = -5

D.

k = -1, r = 5

Correct answer is B

\(x^{2} + 4x + k = (x + r)^{2} + 1\)

\(x^{2} + 4x + k = x^{2} + 2rx + r^{2} + 1\)

Comparing the LHS and RHS equations, we have

\(2r = 4 \implies r = 2\)

\(k = r^{2} + 1 = 2^{2} + 1 = 5\)

583.

If \(\alpha\) and \(\beta\) are the roots of \(x^{2} + x - 2 = 0\), find the value of \(\frac{1}{\alpha^{2}} + \frac{1}{\beta^{2}}\)

A.

\(\frac{5}{4}\)

B.

\(\frac{3}{4}\)

C.

\(\frac{1}{4}\)

D.

\(\frac{-3}{4}\)

Correct answer is A

Given, \(x^{2} + x - 2 = 0\), a = 1, b = 1 and c = -2.

\(\alpha + \beta = \frac{-b}{a} = \frac{-1}{1} = -1\)

\(\alpha\beta = \frac{c}{a} = \frac{-2}{1} = -2\)

\(\frac{1}{\alpha^{2}} + \frac{1}{\beta^{2}} = \frac{\beta^{2} + \alpha^{2}}{(\alpha\beta)^{2}}\)

\(\beta^{2} + \alpha^{2} = (\alpha + \beta)^{2} - 2\alpha\beta = (-1)^{2} - 2(-2) = 1 + 4 = 5\)

\(\frac{1}{\alpha^{2}} + \frac{1}{\beta^{2}} = \frac{5}{(-2)^{2}} = \frac{5}{4}\).

584.

The gradient of a curve at the point (-2, 0) is \(3x^{2} - 4x\). Find the equation of the curve.

A.

\(y = 6x - 4\)

B.

\(y = 6x^{2} - 4x + 12\)

C.

\(y = x^{3} - 2x^{2}\)

D.

\(y = x^{3} - 2x^{2} + 16\)

Correct answer is D

The gradient of a curve is gotten by differentiating the equation of the curve. Therefore, given the gradient, integrate to get the equation of the curve back.

\(\frac{\mathrm d y}{\mathrm d x} = 3x^{2} - 4x\)

\(y = \int {(3x^{2} - 4x)} \mathrm {d} x = \frac{3x^{2+1}}{2+1} - \frac{4x^{1+1}}{1+1} + c\)

= \(x^{3} - 2x^{2} + c \) 

To find c (the constant of integration), when x = -2, y = 0

\(0 = (-2^{3}) - 2(-2^{2}) + c\)

\(0 = -8 - 8 + c \implies c = 16\)

\(\therefore y = x^{3} - 2x^{2} + 16\)

585.

If \(x = i - 3j\) and \(y = 6i + j\), calculate the angle between x and y

A.

trong>

B.

75°

C.

81°

D.

85°

Correct answer is C

\(\overrightarrow{x} . \overrightarrow{y} = |\overrightarrow{x}||\overrightarrow{y}|\cos\theta\)

\(\overrightarrow{x} . \overrightarrow{y} = (i - 3j) . (6i + j) = 6 - 3 = 3\)

\(|\overrightarrow{x}| = \sqrt{1^{2} + (-3)^{2}} = \sqrt{10}\)

\(|\overrightarrow{y}| = \sqrt{6^{2} + 1^{2}} = \sqrt{37}\)

\(\therefore 3 = (\sqrt{10})(\sqrt{37})\cos \theta\)

\(\cos\theta = \frac{3}{\sqrt{370}} = 0.1559\)

\(\theta = \cos^{-1} 0.1559 \approxeq 81°\)