\(-16\)
\(\frac{-16}{3}\)
\(\frac{16}{3}\)
\(16\)
Correct answer is C
\(\int_{0}^{2} (8x - 4x^{2}) \mathrm {d} x = (\frac{8x^{1 + 1}}{2} - \frac{4x^{2+1}}{3})|_{0}^{2}\)
= \((4x^{2} - \frac{4x^{3}}{3}) |_{0}^{2}\)
= \((4(2^2) - \frac{4(2^3)}{3})\)
= \(16 - \frac{32}{3} = \frac{16}{3}\)
If \(2\sin^{2} \theta = 1 + \cos \theta, 0° \leq \theta \leq 90°\), find the value of \(\the...
If g(x) = √(1-x\(^2\)), find the domain of g(x)...
If \(P = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}\) and \(Q = \begin{pmatrix} -2 & ...
If \(^{3x}C_{2} = 15\), find the value of x?...
A particle starts from rest and moves in a straight line such that its velocity, V ms\(^{-1}\),...
If g : r \(\to\) 5 - 2r, r is a real number, find the image of -3...