\(4(6 + 5\pi)\)
\(4(6 + 2\pi)\)
\(4(3 + 3\pi)\)
\(4(3 + 5\pi)\)
Correct answer is A
The angle subtended by the minor arc = \(\frac{\pi}{3} radians\)
The angle subtended by the major arc = \(2\pi - \frac{\pi}{3} = \frac{5\pi}{3}\)
Perimeter of the major arc = \(r\theta + 2r\)
= \(12 \times \frac{5\pi}{3} + 2(12) = 20\pi + 24\)
= \(4(5\pi + 6)\)
Solve: 8\(^{x - 2}\) = 4\(^{3x}\)...
Express \(\frac{3}{3 - √6}\) in the form \(x + m√y\)...
Find the axis of symmetry of the curve \(y = x^{2} - 4x - 12\)....
Marks 0 1 2 3 4 5 Number of candidates 6 4 8 10 9 3 The table abov...
What is the coordinate of the centre of the circle \(5x^{2} + 5y^{2} - 15x + 25y - 3 = 0\)?...