P and Q are the points (3, 1) and (7, 4) respectively. Find the unit vector along PQ.
(43)
(0.60.8)
(0.80.6)
(−0.80.6)
Correct answer is C
PQ=(7−34−1)
=(43)
ˆn=→PQ|PQ|
|PQ|=√42+32=√25=5
ˆn=15(43)=(0.80.6)
Given that P=(342x);Q=(13−24);R=(−525−826) and PQ = R, find the value of x.
-5
-2
2
5
Correct answer is D
P=(342x);Q=(13−24);R=(−525−826)
PQ = (342x)(13−24)=(−5252−2x6+4x)=R
⟹2−2x=−8;−2x=−8−2=−10
6+4x=26⟹4x=26−6=20
⟹x=5
Find the upper quartile of the following scores: 41, 29, 17, 2, 12, 33, 45, 18, 43 and 5.
45
41
33
21
Correct answer is B
Arranging the scores in ascending order, we have: 2, 5, 12, 17, 21, 29, 33, 41, 43, 45.
The upper quartile = 41.
If 2\sin^{2}\theta = 1 + \cos \theta, 0° \leq \theta \leq 90°, find \theta
30°
45°
60°
90°
Correct answer is C
2\sin^{2}\theta = 1 + \cos \theta \implies 2(1 - \cos^{2}\theta) = 1 + \cos \theta
2 - 2\cos^{2}\theta = 1 + \cos \theta
2 - 2\cos^{2}\theta - 1 - \cos \theta = 0
2\cos^{2}\theta + \cos \theta - 1 = 0
2\cos^{2}\theta + 2\cos\theta - \cos \theta - 1 = 0 \implies 2\cos \theta(\cos \theta + 1) - 1(\cos \theta + 1) = 0
(2\cos \theta - 1)(\cos \theta + 1) = 0 \implies \cos \theta = \frac{1}{2}
\theta = \cos^{-1} \frac{1}{2} = 60°