30°
45°
60°
90°
Correct answer is C
\(2\sin^{2}\theta = 1 + \cos \theta \implies 2(1 - \cos^{2}\theta) = 1 + \cos \theta\)
\(2 - 2\cos^{2}\theta = 1 + \cos \theta\)
\(2 - 2\cos^{2}\theta - 1 - \cos \theta = 0\)
\(2\cos^{2}\theta + \cos \theta - 1 = 0\)
\(2\cos^{2}\theta + 2\cos\theta - \cos \theta - 1 = 0 \implies 2\cos \theta(\cos \theta + 1) - 1(\cos \theta + 1) = 0\)
\((2\cos \theta - 1)(\cos \theta + 1) = 0 \implies \cos \theta = \frac{1}{2} \)
\(\theta = \cos^{-1} \frac{1}{2} = 60°\)
Find the constant term in the binomial expansion of (2x\(^2\) + \(\frac{1}{x^2}\))\(...
If \(T = \begin{pmatrix} -2 & -5 \\ 3 & 8 \end{pmatrix}\), find \(T^{-1}\), the inverse of T...
Given that P and Q are non-empty subsets of the universal set, U. Find P \(\cap\) (Q U Q`)....
Express \(\frac{13}{4}\pi\) radians in degrees....
A car is moving at 120\(kmh^{-1}\). Find its speed in \(ms^{-1}\)....