P and Q are the points (3, 1) and (7, 4) respectively. Fi...
P and Q are the points (3, 1) and (7, 4) respectively. Find the unit vector along PQ.
\(\begin{pmatrix} 4 \\ 3 \end{pmatrix}\)
\(\begin{pmatrix} 0.6 \\ 0.8 \end{pmatrix}\)
\(\begin{pmatrix} 0.8 \\ 0.6 \end{pmatrix}\)
\(\begin{pmatrix} -0.8 \\ 0.6 \end{pmatrix}\)
Correct answer is C
\(PQ = \begin{pmatrix} 7 - 3 \\ 4 - 1 \end{pmatrix}\)
\(= \begin{pmatrix} 4 \\ 3 \end{pmatrix}\)
\(\hat{n} = \frac{\overrightarrow{PQ}}{|PQ|} \)
\(|PQ| = \sqrt{4^{2} + 3^{2}} = \sqrt{25} = 5\)
\(\hat{n} = \frac{1}{5}\begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 0.8 \\ 0.6 \end{pmatrix}\)
If \(h(x) = x^{3} - \frac{1}{x^{3}}\), evaluate \(h(a) - h(\frac{1}{a})\)...
From the diagram above, which of the following represents the vector V in component form? ...
Solve \(9^{2x + 1} = 81^{3x + 2}\)...
If \(y = x^{3} - x^{2} - x + 6\), find the values of x at the turning point....
If \(16^{3x} = \frac{1}{4}(32^{x - 1})\), find the value of x....