WAEC Further Mathematics Past Questions & Answers - Page 94

466.

A binary operation, \(\Delta\), is defined on the set of real numbers by \(a \Delta b = a + b + 4\). Find the identity element.

A.

4

B.

2

C.

\(\frac{1}{4}\)

D.

-4

Correct answer is D

\(a \Delta b = a + b + 4\)

\(a \Delta e = a + e + 4 = a\)

\(e = a - a - 4 = -4\)

467.

A.

\(\begin{pmatrix} -6 & 17 \\ 3 & 1 \end{pmatrix}\)

B.

\(\begin{pmatrix} -2 & 9 \\ 4 & 1 \end{pmatrix}\)

C.

\(\begin{pmatrix} 0 & -6 \\ 9 & -8 \end{pmatrix}\)

D.

\(\begin{pmatrix} 0 & 10 \\ 9 & -4 \end{pmatrix}\)

Correct answer is D

\(P = \begin{pmatrix} 2 & 1 \\ 5 & -3 \end{pmatrix} ; Q = \begin{pmatrix} 4 & -8 \\ 1 & -2 \end{pmatrix}\)

\(2P = \begin{pmatrix} 4 & 2 \\ 10 & -6 \end{pmatrix}\)

\(2P - Q = \begin{pmatrix} 4 & 2 \\ 10 & -6 \end{pmatrix} - \begin{pmatrix} 4 & -8 \\ 1 & -2 \end{pmatrix}\)

= \(\begin{pmatrix} 0 & 10 \\ 9 & -4 \end{pmatrix}\)

468.

If \(y = x^{3} - x^{2} - x + 6\), find the values of x at the turning point.

A.

\(\frac{1}{2}, 3\)

B.

\(\frac{1}{3}, -\frac{1}{2}\)

C.

\(1, -\frac{1}{3}\)

D.

\(1, \frac{1}{3}\)

Correct answer is C

At turning point, \(\frac{\mathrm d y}{\mathrm d x} = 0\).

Given \(x^{3} - x^{2} - x + 6 \)

\(\frac{\mathrm d y}{\mathrm d x} = 3x^{2} - 2x - 1 = 0 \)

\(3x^{2} - 3x + x - 1 = 0 \implies (3x + 1)(x - 1) = 0\)

\(x = \frac{-1}{3}, 1\)

469.

Evaluate \(\int_{-2}^{3} (3x^{2} - 2x - 12) \mathrm {d} x\)

A.

-30

B.

-18

C.

-6

D.

6

Correct answer is A

\(\int (3x^{2} - 2x - 12) \mathrm {d} x = \frac{3x^{2 + 1}}{2 + 1} - \frac{2x^{1 + 1}}{2} - 12x\)

= \(x^{3} - x^{2} - 12x\)

\((x^{3} - x^{2} - 12x)|_{-2}^{3} = ((3^{3}) - (3^{2}) - 12(3)) - ((-2^{3}) - (-2^{2}) - 12(-2))\)

= \((27 - 9 - 36) - (-8 - 4 + 24) = -18 - 12 = -30\)

470.

If the midpoint of the line joining (1 - k, -4) and (2, k + 1) is (-k, k), find the value of k.

A.

-4

B.

-3

C.

-2

D.

-1

Correct answer is D

Midpoint between \((x_{1}, y_{1})\) and \((x_{2}, y_{2})\) = \((\frac{x_{1} + x_{2}}{2}, \frac{y_{1} + y_{2}}{2})\).

\((-k, k) = (\frac{2 + (1 + k)}{2}, \frac{-4 + (k + 1)}{2})\)

\(-k = \frac{k + 3}{2} \implies -2k = k + 3\)

\(-3k = 3 \implies k = -1\)