2
3
4
5
Correct answer is D
The equation of a circle is given as: \((x - a)^{2} + (y - b)^{2} = r^{2}\)
Expanding, we have: \(x^{2} + y^{2} - 2ax - 2by + a^{2} + b^{2} = r^{2}\)
\(\implies x^{2} + y^{2} - 2ax - 2by = r^{2} - a^{2} - b^{2}\)
Comparing with the given equation: \(3x^{2} + 3y^{2} + 24x - 12y = 15\)
Making the coefficients of \(x^{2}\) and \(y^{2}\) = 1, we have
\(x^{2} + y^{2} + 8x - 4y = 5\)
\(2a = -8 \implies a = -4\)
\(2b = 4 \implies b = 2\)
\(r^{2} - a^{2} - b^{2} = 5 \implies r^{2} = 5 + (-4)^{2} + (2)^{2} = 5 + 16 + 4 = 25\)
\(\therefore r = 5\)
Simplify \(\frac{x^{3n + 1}}{x^{2n + \frac{5}{2}}(x^{2n - 3})^{\frac{1}{2}}}\)...
Solve: \(4(2^{x^2}) = 8^{x}\)...
If \(16^{3x} = \frac{1}{4}(32^{x - 1})\), find the value of x....
Solve: \(3^{2x-2} - 28(3^{x-2}) + 3 = 0\)...
Differentiate \(\frac{5x^{3} + x^{2}}{x}, x\neq 0\) with respect to x....
Evaluate \(\int_{1}^{2} (2 + 2x - 3x^{2}) \mathrm {d} x\)....