\(\frac{1}{2}, 3\)
\(\frac{1}{3}, -\frac{1}{2}\)
\(1, -\frac{1}{3}\)
\(1, \frac{1}{3}\)
Correct answer is C
At turning point, \(\frac{\mathrm d y}{\mathrm d x} = 0\).
Given \(x^{3} - x^{2} - x + 6 \)
\(\frac{\mathrm d y}{\mathrm d x} = 3x^{2} - 2x - 1 = 0 \)
\(3x^{2} - 3x + x - 1 = 0 \implies (3x + 1)(x - 1) = 0\)
\(x = \frac{-1}{3}, 1\)
Given that \(f : x \to \frac{2x - 1}{x + 2}, x \neq -2\), find \(f^{-1}\), the inverse of f ...
Marks 2 3 4 5 6 7 8 No of students 5 7 9 6 3 6 4 The table above sho...
If \(y^{2} + xy - x = 0\), find \(\frac{\mathrm d y}{\mathrm d x}\)....
Find the constant term in the binomial expansion of (2x\(^2\) + \(\frac{1}{x^2}\))\(...
Find the axis of symmetry of the curve \(y = x^{2} - 4x - 12\)....