Processing math: 21%

WAEC Further Mathematics Past Questions & Answers - Page 86

426.

If y2+xyx=0, find dydx.

A.

1y2y

B.

12yx

C.

1yx+2y

D.

1x+2y

Correct answer is C

Given y2+xyx=0

Using the method of implicit differentiation, we have

2ydydx+xdydx+y1=0

dydx(2y+x)=1y

dydx=1yx+2y

427.

Find lim

A.

-1

B.

\frac{-1}{7}

C.

\frac{1}{7}

D.

1

Correct answer is A

\lim \limits_{x \to 3} \frac{x + 3}{x^{2} - x - 12} = \frac{3 + 3}{3^{2} - 3 - 12}

= \frac{6}{-6} = -1

428.

f(x) = (x^{2} + 3)^{2} is defines on the set of real numbers, R. Find the gradient of f(x) at x = \frac{1}{2}

A.

4.0

B.

6.5

C.

5.0

D.

10.6

Correct answer is B

f(x) = (x^{2} + 3)^{2}

Using the chain rule, \frac{\mathrm d y}{\mathrm d x} = \frac{\mathrm d y}{\mathrm d u} \times \frac{\mathrm d u}{\mathrm d x}

Let u = x^{2} + 3 so that y = u^{2}

\frac{\mathrm d y}{\mathrm d u} = 2u

\frac{\mathrm d u}{\mathrm d x} = 2x

\therefore \frac{\mathrm d y}{\mathrm d x} = 2u(2x) = 4xu

But u = x^{2} + 3,

\frac{\mathrm d y}{\mathrm d x} = 4x(x^{2} + 3)

At x = \frac{1}{2}, \frac{\mathrm d y}{\mathrm d x} = 4(\frac{1}{2})((\frac{1}{2})^{2} + 3)

= 2 \times \frac{13}{4} = \frac{13}{2} = 6.5

429.

The sum and product of the roots of a quadratic equation are \frac{4}{7} and \frac{5}{7} respectively. Find its equation.

A.

7x^{2} - 4x - 5 = 0

B.

7x^{2} - 4x + 5 = 0

C.

7x^{2} + 4x - 5 = 0

D.

7x^{2} + 4x + 5 = 0

Correct answer is B

Let the roots of the equation be \alpha and \beta.

\alpha + \beta = \frac{-b}{a} = \frac{4}{7}

\alpha \beta = \frac{c}{a} = \frac{5}{7}

\implies a = 7, b = -4, c = 5

Equation: ax^{2} + bx + c = 0

= 7x^{2} - 4x + 5 = 0

430.

f(x) = p + qx, where p and q are constants. If f(1) = 7 and f(5) = 19, find f(3).

A.

13

B.

15

C.

17

D.

26

Correct answer is A

f(x) = p + qx

f(1) = p + q(1) \implies p + q = 7 .... (1)

f(5) = p + 5q = 19 .....(2)

Solving for p and q using simultaneous equation, p = 4, q = 3

f(3) = 4 + 3(3) = 13