1−y2y
1−2yx
1−yx+2y
1x+2y
Correct answer is C
Given y2+xy−x=0
Using the method of implicit differentiation, we have
2ydydx+xdydx+y−1=0
dydx(2y+x)=1−y
dydx=1−yx+2y
-1
\frac{-1}{7}
\frac{1}{7}
1
Correct answer is A
\lim \limits_{x \to 3} \frac{x + 3}{x^{2} - x - 12} = \frac{3 + 3}{3^{2} - 3 - 12}
= \frac{6}{-6} = -1
4.0
6.5
5.0
10.6
Correct answer is B
f(x) = (x^{2} + 3)^{2}
Using the chain rule, \frac{\mathrm d y}{\mathrm d x} = \frac{\mathrm d y}{\mathrm d u} \times \frac{\mathrm d u}{\mathrm d x}
Let u = x^{2} + 3 so that y = u^{2}
\frac{\mathrm d y}{\mathrm d u} = 2u
\frac{\mathrm d u}{\mathrm d x} = 2x
\therefore \frac{\mathrm d y}{\mathrm d x} = 2u(2x) = 4xu
But u = x^{2} + 3,
\frac{\mathrm d y}{\mathrm d x} = 4x(x^{2} + 3)
At x = \frac{1}{2}, \frac{\mathrm d y}{\mathrm d x} = 4(\frac{1}{2})((\frac{1}{2})^{2} + 3)
= 2 \times \frac{13}{4} = \frac{13}{2} = 6.5
7x^{2} - 4x - 5 = 0
7x^{2} - 4x + 5 = 0
7x^{2} + 4x - 5 = 0
7x^{2} + 4x + 5 = 0
Correct answer is B
Let the roots of the equation be \alpha and \beta.
\alpha + \beta = \frac{-b}{a} = \frac{4}{7}
\alpha \beta = \frac{c}{a} = \frac{5}{7}
\implies a = 7, b = -4, c = 5
Equation: ax^{2} + bx + c = 0
= 7x^{2} - 4x + 5 = 0
f(x) = p + qx, where p and q are constants. If f(1) = 7 and f(5) = 19, find f(3).
13
15
17
26
Correct answer is A
f(x) = p + qx
f(1) = p + q(1) \implies p + q = 7 .... (1)
f(5) = p + 5q = 19 .....(2)
Solving for p and q using simultaneous equation, p = 4, q = 3
f(3) = 4 + 3(3) = 13