13
15
17
26
Correct answer is A
\(f(x) = p + qx\)
\(f(1) = p + q(1) \implies p + q = 7 .... (1)\)
\(f(5) = p + 5q = 19 .....(2)\)
Solving for p and q using simultaneous equation, p = 4, q = 3
\(f(3) = 4 + 3(3) = 13\)
Find the upper quartile of the following scores: 41, 29, 17, 2, 12, 33, 45, 18, 43 and 5. ...
Given that \(p = \begin{bmatrix} x&4\\3&7\end{bmatrix} Q =\begin{bmatrix} x&3\\1&2x\...
Find \(\lim\limits_{x \to 3} \frac{2x^{2} + x - 21}{x - 3}\)....
Given that \(f(x) = 5x^{2} - 4x + 3\), find the coordinates of the point where the gradient is 6....
Given that \(r = 3i + 4j\) and \(t = -5i + 12j\), find the acute angle between them....
Evaluate \(\cos 75°\), leaving the answer in surd form....
If \(f(x) = \frac{1}{2 - x}, x \neq 2\), find \(f^{-1}(-\frac{1}{2})\)....
If \(\begin{vmatrix} 3 & x \\ 2 & x - 2 \end{vmatrix} = -2\), find the value of x....