Find the coefficient of x2in the binomial expansion of (x+2x2)5
10
40
32
80
Correct answer is A
(x+2x2)5
n = 5, r = 4, p = x and q = 2x2
5C4x4 (2x2)1 = 5C4 2x4x2
5C4 2x2 = 5![5−4]!4! * 2x2
5∗4!4!∗2x2 = 5 * 2x2 = 10x2
The coefficient is 10.
18
6
-6
-18
Correct answer is C
4p2+4C2−4p3
npr=n![n−r]!andnCr=n![n−r]!r!
= 4![4−2]!+4![4−2]!2!−4![4−3]!=4!2!+4!2!2!−4!1!
= 4∗3∗2!2!+4∗3∗2!2!2!−4∗3∗2∗11!
12 + 6 - 24 = -6
Given |2−314||−6k||3−26|=15. Solve for k.
-8
-5
-4
-3
Correct answer is B
|2−314||−6k||3−26|=15
|2[−6]−3k1[−6]+4k|=|3−26|
|−12−3k−6+4k|=|3−26|
-12 - 3k = 3
-3k = 3 + 12
k = 15−3
k = -5
5612
6512
12
65
Correct answer is B
1∫0x2(x3+2)3dx
let u=x3+2,du=3x2dx
when x = 1, u = 3
when x = 0, u = 2
dx = du3x2
3∫2 x2[u]33x2
3∫2 u33 du
= u43∗423
112[u4]23
112[34−24]
112[81−16]
6512