WAEC Further Mathematics Past Questions & Answers - Page 138

686.

Solve \(3^{2x} - 3^{x+2} = 3^{x+1} - 27\)

A.

1 or 0

B.

1 or 2

C.

1 or -2

D.

-1 or 2

Correct answer is B

\(3^{2x} - 3^{x+2} = 3^{x+1} - 27\)

= \((3^{x})^{2} - (3^{x}).(3^{2}) = (3^{x}).(3^{1}) - 27\)

Let \(3^{x}\) be B; we have

= \(B^{2} - 9B - 3B + 27 = B^{2} - 12B + 27 = 0\).

Solving the equation, we have B = 3 or 9.

\(3^{x} = 3\) or \(3^{x} = 9\)

\(3^{x} = 3^{1}\) or \(3^{x} = 3^{2}\)

Equating, we have x = 1 or 2.

687.

A force (10i + 4j)N acts on a body of mass 2kg which is at rest. Find the velocity after 3 seconds.

A.

\((\frac{5i}{3} + \frac{2j}{3})ms^{-1}\)

B.

\((\frac{10i}{3} + \frac{4j}{3})ms^{-1}\)

C.

\((5i + 2j)ms^{-1}\)

D.

\((15i + 6j)ms^{-1}\)

Correct answer is D

Recall, \(F = mass \times acceleration \implies acceleration = \frac{force}{mass}\)

= \(\frac{10i + 4j}{2} = (5i + 2j) ms^{-2}\)

= \(v = u + at  \implies v \text{at 3 seconds} = 0 + (5i + 2j \times 3)\)

= \((15i + 6j) ms^{-1}\)

688.

Given that a = 5i + 4j and b = 3i + 7j, evaluate (3a - 8b).

A.

9i + 44j

B.

-9i + 44j

C.

-9i - 44j

D.

9i - 44j

Correct answer is C

= \(3(5i+4j) - 8(3i+7j) = 15i + 12j - 24i -56j\)

= \(-9i - 44j\)

689.

Face 1 2 3 4 5 6
Frequency 12 18 y 30 2y 45

 Given the table above as the result of tossing a fair die 150 times, find the mode.

A.

3

B.

4

C.

5

D.

6

Correct answer is D

The mode is the occurrence with the highest frequency which, from the table, is 45 (the occurrence of obtaining a 6).

690.

Face 1 2 3 4 5 6
Frequency 12 18 y 30 2y 45

Given the table above as the results of tossing a fair die 150 times. Find the probability of obtaining a 5.

A.

\(\frac{1}{10}\)

B.

\(\frac{1}{6}\)

C.

\(\frac{1}{5}\)

D.

\(\frac{3}{10}\)

Correct answer is C

Probability of obtaining a 5 = \(\frac{\text{frequency of 5}}{\text{total frequency}}\)

\(12+18+y+30+2y+45 = 150 \implies 105+3y = 150\)

\(3y = 45; y = 15\)

Probability of 5 = \(\frac{2\times 15}{150} = \frac{1}{5}\)