6
5
4
3
Correct answer is D
(√x+1)∗(√x−1)=4⟹√x+1√x−1+√x−1√x+1=4
(√x+1)(√x+1)+(√x−1)(√x−1)(√x−1)(√x+1)
= x+2√x+1+x−2√x+1x−1⟹2x+2x−1=4
2x+2=4x−4∴
x = 3
Given that f(x) = 3x^{2} - 12x + 12 and f(x) = 3, find the values of x.
1, 3
-1, -3
1, -3
-1, 3
Correct answer is A
f(x) = 3x^{2} - 12x + 12 and f(x) = 3
\therefore f(x) = 3 = 3x^{2} - 12x + 12 \implies 3x^{2} - 12x + 12 - 3 = 0
3x^{2} - 12x + 9 = 0; 3x^{2} - 9x - 3x + 9 = 0
3x(x - 3) - 3(x - 3) = (3x - 3)(x - 3) = 0
3x - 3 = 0 or x - 3 = 0
x = 1 or 3
Find the domain of g(x) = \frac{4x^{2} - 1}{\sqrt{9x^{2} + 1}}
{x : x \in R, x = \frac{1}{2}}
x: x \in R, x\neq \frac{1}{3}
x : x \in R, x = \frac{1}{3}
x: x \in R
Correct answer is D
The domain of a function refers to the regions where the function is defined or has a value on a particular region.
\frac{4x^{2} - 1}{\sqrt{9x^{2} + 1}} has a domain defined on all set of real numbers because the function is defined on the set of real numbers when the denominator \sqrt{9x^{2} + 1} \geq 0.
\sqrt{9x^{2} + 1} \geq 0 \implies 9x^{2} + 1 \geq 0 which because of the square sign has a value for all values of x, be it negative or positive.
Simplify \frac{\sqrt{3}}{\sqrt{3} -1} + \frac{\sqrt{3}}{\sqrt{3} + 1}
\frac{1}{2}
3
2\sqrt{3}
6
Correct answer is B
\frac{\sqrt{3}}{\sqrt{3} - 1} + \frac{\sqrt{3}}{\sqrt{3} + 1}
= \frac{\sqrt{3}(\sqrt{3} + 1) + \sqrt{3}(\sqrt{3} - 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)}
= \frac{3 + \sqrt{3} + 3 - \sqrt{3}}{3 + \sqrt{3} - \sqrt{3} - 1}
= \frac{6}{2} = 3
If (2x^{2} - x - 3) is a factor of f(x) = 2x^{3} - 5x^{2} - x + 6, find the other factor
(x - 2)
(x - 1)
(x + 1)
(x + \frac{3}{2})
Correct answer is A
Divide (2x^{3} - 5x^{2} - x + 6) by (2x^{2} - x - 3) to get the other factor. Be careful of sign conventions.