Processing math: 14%

WAEC Further Mathematics Past Questions & Answers - Page 136

676.

A binary operation * is defined on the set of real numbers, by ab=ab+ba. If (x+1)(x1)=4, find the value of x. 

A.

6

B.

5

C.

4

D.

3

Correct answer is D

(x+1)(x1)=4x+1x1+x1x+1=4

(x+1)(x+1)+(x1)(x1)(x1)(x+1)

= x+2x+1+x2x+1x12x+2x1=4

2x+2=4x4

x = 3

677.

Given that f(x) = 3x^{2} -  12x + 12 and f(x) = 3, find the values of x.

A.

1, 3

B.

-1, -3

C.

1, -3

D.

-1, 3

Correct answer is A

f(x) = 3x^{2} - 12x + 12 and f(x) = 3

\therefore f(x) = 3 = 3x^{2} - 12x + 12 \implies 3x^{2} - 12x + 12 - 3 = 0

3x^{2} - 12x + 9 = 0; 3x^{2} - 9x - 3x + 9 = 0

3x(x - 3) - 3(x - 3) = (3x - 3)(x - 3) = 0

3x - 3 = 0 or x - 3 = 0

x = 1 or 3

678.

Find the domain of g(x) = \frac{4x^{2} - 1}{\sqrt{9x^{2} + 1}}

A.

{x : x \in R, x = \frac{1}{2}}

B.

x: x \in R, x\neq \frac{1}{3}

C.

x : x \in R, x = \frac{1}{3}

D.

x: x \in R

Correct answer is D

The domain of a function refers to the regions where the function is defined or has a value on a particular region.

\frac{4x^{2} - 1}{\sqrt{9x^{2} + 1}} has a domain defined on all set of real numbers because the function is defined on the set of real numbers when the denominator \sqrt{9x^{2} + 1} \geq 0.

\sqrt{9x^{2} + 1} \geq 0 \implies 9x^{2} + 1 \geq 0 which because of the square sign has a value for all values of x, be it negative or positive.

 

679.

Simplify \frac{\sqrt{3}}{\sqrt{3} -1} + \frac{\sqrt{3}}{\sqrt{3} + 1}

A.

\frac{1}{2}

B.

3

C.

2\sqrt{3}

D.

6

Correct answer is B

\frac{\sqrt{3}}{\sqrt{3} - 1} + \frac{\sqrt{3}}{\sqrt{3} + 1}

= \frac{\sqrt{3}(\sqrt{3} + 1) + \sqrt{3}(\sqrt{3} - 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)}

= \frac{3 + \sqrt{3} + 3 - \sqrt{3}}{3 + \sqrt{3} - \sqrt{3} - 1}

= \frac{6}{2} = 3

680.

If (2x^{2} - x - 3) is a factor of f(x) = 2x^{3} - 5x^{2} - x + 6, find the other factor

A.

(x - 2)

B.

(x - 1)

C.

(x + 1)

D.

(x + \frac{3}{2})

Correct answer is A

Divide (2x^{3} - 5x^{2} - x + 6) by (2x^{2} - x - 3) to get the other factor. Be careful of sign conventions.