x2+y2−5x+3=0
x2+y2−2x−6y−13=0
x2+y2−x+5y−6=0
x2+y2−x−y−8=0
Correct answer is D
Given the endpoints of the diameter |EF|, the midpoint is the centre of the circle
= (−2+32,−1+22)=(12,12)
The radius is the distance from the centre to any point on the circle. Using (12,12) and (3,2);
r2=(3−12)2+(2−12)2=254+94
r2=344
The equation of a circle is given as:
(x−a)2+(y−b)2=r2, (a, b) as the centre of the circle.
=(x−12)2+(y−12)2=344
x2−x+14+y2−y+14=172
= x2−y2−x−y−8=0
Find the equation of the line which passes through (-4, 3) and parallel to line y = 2x + 5.
y = 2x + 11
y = 3x + 11
y = 3x - 5
y = 2x - 11
Correct answer is A
The gradient of the line y = 2x + 5 ;
dydx=2
y−3x−(−4)=y−3x+4=2
y−3=2(x+4)⟹y=2x+11
Given that tanx=512, and tany=34, Find tan(x+y).
1633
3356
3316
5633
Correct answer is D
tan(x+y)=tanx+tany1−tanxtany
tanx=512;tany=34
tan(x+y)=512+341−(512×34)
= 14123348
= 5633
Evaluate \cos 75°, leaving the answer in surd form.
\frac{\sqrt{2}}{2}(\sqrt{3} + 1)
\frac{\sqrt{2}}{4}(\sqrt{3} - 1)
\frac{\sqrt{2}}{4}(\sqrt{3} + 1)
\frac{\sqrt{2}}{2}(\sqrt{3} - 1)
Correct answer is B
\cos(a + b) = \cos a\cos b - \sin a\sin b
\cos75° = \cos(30 + 45) = (\cos30)(\cos45) - (\sin30)(\sin45)
= (\frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2}) - (\frac{1}{2} \times \frac{\sqrt{2}}{2})
= \frac{\sqrt{6} - \sqrt{2}}{4}
= \frac{\sqrt{2}(\sqrt{3} - 1)}{4}
\begin{pmatrix} 5 & 1 \\ 16 & 5 \end{pmatrix}
\begin{pmatrix} 2 & 16 \\ 1 & 10 \end{pmatrix}
\begin{pmatrix} 2 & 7 \\ 1 & 8 \end{pmatrix}
\begin{pmatrix} 2 & 5 \\ -1 & -8 \end{pmatrix}
Correct answer is C
\begin{pmatrix} 1 & 2 \\ 5 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 3 \end{pmatrix}
= \begin{pmatrix} 1\times 0 + 2\times 1 & 1\times 1 + 2\times3 \\ 5\times0 + 1\times1 & 5\times1 + 1\times 3 \end{pmatrix}
= \begin{pmatrix} 2 & 7 \\ 1 & 8 \end{pmatrix}