Processing math: 59%

WAEC Further Mathematics Past Questions & Answers - Page 124

616.

Points E(-2, -1) and F(3, 2) are the ends of the diameter of a circle. Find the equation of the circle.

A.

x2+y25x+3=0

B.

x2+y22x6y13=0

C.

x2+y2x+5y6=0

D.

x2+y2xy8=0

Correct answer is D

Given the endpoints of the diameter |EF|, the midpoint is the centre of the circle

= (2+32,1+22)=(12,12)

The radius is the distance from the centre to any point on the circle. Using (12,12) and (3,2);

r2=(312)2+(212)2=254+94

r2=344

The equation of a circle is given as:

(xa)2+(yb)2=r2, (a, b) as the centre of the circle.

=(x12)2+(y12)2=344

x2x+14+y2y+14=172

= x2y2xy8=0 

617.

Find the equation of the line which passes through (-4, 3) and parallel to line y =  2x + 5.

A.

y = 2x + 11

B.

y = 3x + 11

C.

y = 3x - 5

D.

y = 2x - 11

Correct answer is A

The gradient of the line y = 2x + 5 ;

dydx=2

y3x(4)=y3x+4=2

y3=2(x+4)y=2x+11

618.

Given that tanx=512, and tany=34, Find tan(x+y).

A.

1633

B.

3356

C.

3316

D.

5633

Correct answer is D

tan(x+y)=tanx+tany1tanxtany

tanx=512;tany=34

tan(x+y)=512+341(512×34)

= 14123348

= 5633

619.

Evaluate \cos 75°, leaving the answer in surd form.

A.

\frac{\sqrt{2}}{2}(\sqrt{3} + 1)

B.

\frac{\sqrt{2}}{4}(\sqrt{3} - 1)

C.

\frac{\sqrt{2}}{4}(\sqrt{3} + 1)

D.

\frac{\sqrt{2}}{2}(\sqrt{3} - 1)

Correct answer is B

\cos(a + b) = \cos a\cos b - \sin a\sin b

\cos75° = \cos(30 + 45) = (\cos30)(\cos45) - (\sin30)(\sin45)

= (\frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2}) - (\frac{1}{2} \times \frac{\sqrt{2}}{2})

= \frac{\sqrt{6} - \sqrt{2}}{4}

= \frac{\sqrt{2}(\sqrt{3} - 1)}{4}

620.

If P = \begin{pmatrix} 1 & 2 \\ 5 & 1 \end{pmatrix} and Q = \begin{pmatrix} 0 & 1 \\ 1 & 3 \end{pmatrix}, find PQ.

A.

\begin{pmatrix} 5 & 1 \\ 16 & 5 \end{pmatrix}

B.

\begin{pmatrix} 2 & 16 \\ 1 & 10 \end{pmatrix}

C.

\begin{pmatrix} 2 & 7 \\ 1 & 8 \end{pmatrix}

D.

\begin{pmatrix} 2 & 5 \\ -1 & -8 \end{pmatrix}

Correct answer is C

\begin{pmatrix} 1 & 2 \\ 5 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 3 \end{pmatrix}

= \begin{pmatrix} 1\times 0 + 2\times 1 & 1\times 1 + 2\times3 \\ 5\times0 + 1\times1 &  5\times1 + 1\times 3 \end{pmatrix}

= \begin{pmatrix} 2 & 7 \\ 1 & 8 \end{pmatrix}