\(\frac{16}{33}\)
\(\frac{33}{56}\)
\(\frac{33}{16}\)
\(\frac{56}{33}\)
Correct answer is D
\(\tan (x + y) = \frac{\tan x + \tan y}{1 - \tan x\tan y}\)
\(\tan x = \frac{5}{12} ; \tan y = \frac{3}{4}\)
\(\tan (x + y) = \frac{\frac{5}{12} + \frac{3}{4}}{1 - (\frac{5}{12} \times \frac{3}{4}})\)
= \(\frac{\frac{14}{12}}{\frac{33}{48}}\)
= \(\frac{56}{33}\)
Simplify \(\frac{1 + \sqrt{8}}{3 - \sqrt{2}}\)...
Simplify: \(^{n}C_{r} ÷ ^{n}C_{r-1}\)...
If a fair coin is tossed four times, what is the probability of obtaining at least one head? ...
For what value of k is 4x\(^2\) - 12x + k, a perfect square?...
Simplify \(\frac{1}{3}\) log8 + \(\frac{1}{3}\) log 64 - 2 log6...
Given that \(a^{\frac{5}{6}} \times a^{\frac{-1}{n}} = 1\), solve for n...