Evaluate \(\cos 75°\), leaving the answer in surd form.

A.

\(\frac{\sqrt{2}}{2}(\sqrt{3} + 1)\)

B.

\(\frac{\sqrt{2}}{4}(\sqrt{3} - 1)\)

C.

\(\frac{\sqrt{2}}{4}(\sqrt{3} + 1)\)

D.

\(\frac{\sqrt{2}}{2}(\sqrt{3} - 1)\)

Correct answer is B

\(\cos(a + b) = \cos a\cos b - \sin a\sin b\)

\(\cos75° = \cos(30 + 45) = (\cos30)(\cos45) - (\sin30)(\sin45)\)

= \((\frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2}) - (\frac{1}{2} \times \frac{\sqrt{2}}{2})\)

= \(\frac{\sqrt{6} - \sqrt{2}}{4}\)

= \(\frac{\sqrt{2}(\sqrt{3} - 1)}{4}\)