\(\frac{3x - 4}{2x - 7}, x \neq \frac{7}{2}\)
\(\frac{3x - 7}{2x - 4}, x \neq 2\)
\(\frac{2x - 7}{4x - 3}, x \neq \frac{3}{4}\)
\(\frac{4x - 7}{2x - 4}, x \neq 2\)
Correct answer is B
\(h : x \to 2 - \frac{1}{2x - 3}\)
\(h(x) = \frac{2(2x - 3) - 1}{2x - 3} = \frac{4x - 7}{2x - 3}\)
Let x = h(y)
\(x = \frac{4y - 7}{2y - 3}\)
\(x(2y - 3) = 4y - 7 \implies 2xy - 4y = 3x - 7\)
\(y = \frac{3x - 7}{2x - 4}\)
\(h^{-1}(x) = \frac{3x - 7}{2x - 4}\)
If \(T = \begin{pmatrix} -2 & -5 \\ 3 & 8 \end{pmatrix}\), find \(T^{-1}\), the inverse of T.
\(\begin{pmatrix} -8 & -5 \\ 3 & 2 \end{pmatrix}\)
\(\begin{pmatrix} -8 & -5 \\ 3 & -2 \end{pmatrix}\)
\(\begin{pmatrix} -8 & -5 \\ -3 & 2 \end{pmatrix}\)
\(\begin{pmatrix} -8 & -5 \\ -3 & -2 \end{pmatrix}\)
Correct answer is A
Let \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} = T^{-1}\)
\(T . T^{-1} = I\)
\(\begin{pmatrix} -2 & -5 \\ 3 & 8 \end{pmatrix}\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\)
\(\implies -2a - 5c = 1\)
\(-2b - 5d = 0 \implies b = \frac{-5d}{2}\)
\(3a + 8c = 0 \implies a = \frac{-8c}{3}\)
\(3b + 8d = 1\)
\(-2(\frac{-8c}{3}) - 5c = \frac{16c}{3} - 5c = \frac{c}{3} = 1 \implies c = 3\)
\(3(\frac{-5d}{2}) + 8d = \frac{-15d}{2} + 8d = \frac{d}{2} = 1 \implies d = 2\)
\(b = \frac{-5 \times 2}{2} = -5\)
\(a = \frac{-8 \times 3}{3} = -8\)
\(\therefore T^{-1} = \begin{pmatrix} -8 & -5 \\ 3 & 2 \end{pmatrix}\)
Find the derivative of \(\sqrt[3]{(3x^{3} + 1}\) with respect to x.
\(\frac{3x}{3(3x^{3} + 1)}\)
\(\frac{3x^{2}}{\sqrt[3]{(3x^{3} + 1)^{2}}}\)
\(\frac{3x}{\sqrt[3]{3x^{2} + 1}}\)
\(\frac{3x^{2}}{3(3x^{2} + 1)^{2}}\)
Correct answer is B
\(y = \sqrt[3]{3x^{3} + 1} = (3x^{3} + 1)^{\frac{1}{3}}\)
Let u = \(3x^{3} + 1\); y = \(u^{\frac{1}{3}}\)
\(\frac{\mathrm d y}{\mathrm d x} = (\frac{\mathrm d y}{\mathrm d u})(\frac{\mathrm d u}{\mathrm d x})\)
\(\frac{\mathrm d y}{\mathrm d u} = \frac{1}{3}u^{\frac{-2}{3}}\)
\(\frac{\mathrm d u}{\mathrm d x} = 9x^{2}\)
\(\frac{\mathrm d y}{\mathrm d x} = (\frac{1}{3}(3x^{3} + 1)^{\frac{-2}{3}})(9x^{2})\)
= \(\frac{3x^{2}}{\sqrt[3]{(3x^{3} + 1)^{2}}}\)
If \(\frac{x + P}{(x - 1)(x - 3)} = \frac{Q}{x - 1} + \frac{2}{x - 3}\), find the value of (P + Q)
-2
-1
0
1
Correct answer is C
\(\frac{x + P}{(x-1)(x-3)} = \frac{Q}{x-1} + \frac{2}{x-3}\)
\(\frac{x + P}{(x-1)(x-3)} = \frac{Q(x-3) + 2(x-1)}{(x-1)(x-3)}\)
Comparing LHS and RHS of the equation, we have
\(x + P = Qx - 3Q + 2x -2\)
\(P = -3Q - 2\)
\(Q + 2 = 1 \implies Q = 1 - 2 = -1\)
\(P = -3(-1) - 2 = 3 - 2 = 1\)
\(P + Q = 1 + (-1) = 0\)
5
6
8
10
Correct answer is D
\(p(blue) = \frac{\text{no of blue balls}}{\text{total no of balls}}\)
= \(\frac{2}{3} = \frac{k}{k + 5}\)
\(3k = 2(k + 5) \implies 3k = 2k + 10\)
\(3k - 2k = k = 10\)