Processing math: 34%

WAEC Further Mathematics Past Questions & Answers - Page 110

546.

If T=(2538), find T1, the inverse of T.

A.

(8532)

B.

(8532)

C.

(8532)

D.

(8532)

Correct answer is A

Let (abcd)=T1

T.T1=I

(2538)(abcd)=(1001)

2a5c=1

2b5d=0b=5d2

3a+8c=0a=8c3

3b+8d=1

2(8c3)5c=16c35c=c3=1c=3

3(5d2)+8d=15d2+8d=d2=1d=2

b=5×22=5

a=8×33=8

547.

Find the derivative of \sqrt[3]{(3x^{3} + 1} with respect to x.

A.

\frac{3x}{3(3x^{3} + 1)}

B.

\frac{3x^{2}}{\sqrt[3]{(3x^{3} + 1)^{2}}}

C.

\frac{3x}{\sqrt[3]{3x^{2} + 1}}

D.

\frac{3x^{2}}{3(3x^{2} + 1)^{2}}

Correct answer is B

y = \sqrt[3]{3x^{3} + 1}  = (3x^{3} + 1)^{\frac{1}{3}}

Let u = 3x^{3} + 1; y = u^{\frac{1}{3}}

\frac{\mathrm d y}{\mathrm d x} = (\frac{\mathrm d y}{\mathrm d u})(\frac{\mathrm d u}{\mathrm d x})

\frac{\mathrm d y}{\mathrm d u} = \frac{1}{3}u^{\frac{-2}{3}}

\frac{\mathrm d u}{\mathrm d x} = 9x^{2}

\frac{\mathrm d y}{\mathrm d x} = (\frac{1}{3}(3x^{3} + 1)^{\frac{-2}{3}})(9x^{2})

= \frac{3x^{2}}{\sqrt[3]{(3x^{3} + 1)^{2}}} 

548.

If \frac{x + P}{(x - 1)(x - 3)} = \frac{Q}{x - 1} + \frac{2}{x - 3}, find the value of (P + Q)

A.

-2

B.

-1

C.

0

D.

1

Correct answer is C

\frac{x + P}{(x-1)(x-3)} = \frac{Q}{x-1} + \frac{2}{x-3}

\frac{x + P}{(x-1)(x-3)} = \frac{Q(x-3) + 2(x-1)}{(x-1)(x-3)}

Comparing LHS and RHS of the equation, we have

x + P = Qx - 3Q + 2x -2

P = -3Q - 2

Q + 2 = 1 \implies Q = 1 - 2 = -1

P = -3(-1) - 2 = 3 - 2 = 1

P + Q = 1 + (-1) = 0

549.

A box contains 5 red and k blue balls. A ball is selected at random from the box. If the probability of selecting a blue ball is \frac{2}{3}, find the value of k

A.

5

B.

6

C.

8

D.

10

Correct answer is D

p(blue) = \frac{\text{no of blue balls}}{\text{total no of balls}}

= \frac{2}{3} = \frac{k}{k + 5}

3k = 2(k + 5)  \implies 3k = 2k + 10

3k - 2k = k = 10

550.

If 2, (k+1), 8,... form an exponential sequence (GP), find the values of k

A.

-3 and 5

B.

5 and -5

C.

3 and -3

D.

-5 and 3

Correct answer is D

Given an exponential sequence, say a, b, c,..., as consecutive terms, then \sqrt{a \times c} = b.

\therefore 2, (k+1), 8 \implies \sqrt{2 \times 8} = k + 1

k + 1 = \pm{4} \implies k = \text{-5 or 3}