WAEC Further Mathematics Past Questions & Answers - Page 110

546.

A function is defined by \(h : x \to 2 - \frac{1}{2x - 3}, x \neq \frac{3}{2}\). Find \(h^-1\), the inverse of h.

A.

\(\frac{3x - 4}{2x - 7}, x \neq \frac{7}{2}\)

B.

\(\frac{3x - 7}{2x - 4}, x \neq 2\)

C.

\(\frac{2x - 7}{4x - 3}, x \neq \frac{3}{4}\)

D.

\(\frac{4x - 7}{2x - 4}, x \neq 2\)

Correct answer is B

\(h : x \to 2 - \frac{1}{2x - 3}\)

\(h(x) = \frac{2(2x - 3) - 1}{2x - 3} = \frac{4x - 7}{2x - 3}\)

Let x = h(y)

\(x = \frac{4y - 7}{2y - 3}\)

\(x(2y - 3) = 4y - 7  \implies 2xy - 4y = 3x - 7\)

\(y = \frac{3x - 7}{2x - 4}\)

\(h^{-1}(x) = \frac{3x - 7}{2x - 4}\)

547.

If \(T = \begin{pmatrix} -2 & -5 \\ 3 & 8 \end{pmatrix}\), find \(T^{-1}\), the inverse of T.

A.

\(\begin{pmatrix} -8 & -5 \\ 3 & 2 \end{pmatrix}\)

B.

\(\begin{pmatrix} -8 & -5 \\ 3 & -2 \end{pmatrix}\)

C.

\(\begin{pmatrix} -8 & -5 \\ -3 & 2 \end{pmatrix}\)

D.

\(\begin{pmatrix} -8 & -5 \\ -3 & -2 \end{pmatrix}\)

Correct answer is A

Let \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} = T^{-1}\)

\(T . T^{-1} = I\)

\(\begin{pmatrix} -2 & -5 \\ 3 & 8 \end{pmatrix}\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\)

\(\implies -2a - 5c = 1\)

\(-2b - 5d = 0 \implies b = \frac{-5d}{2}\)

\(3a + 8c = 0 \implies a = \frac{-8c}{3}\)

\(3b + 8d = 1\)

\(-2(\frac{-8c}{3}) - 5c = \frac{16c}{3} - 5c = \frac{c}{3} = 1 \implies c = 3\)

\(3(\frac{-5d}{2}) + 8d = \frac{-15d}{2} + 8d = \frac{d}{2} = 1 \implies d = 2\)

\(b = \frac{-5 \times 2}{2} = -5\)

\(a = \frac{-8 \times 3}{3} = -8\)

\(\therefore  T^{-1} = \begin{pmatrix} -8 & -5 \\ 3 & 2 \end{pmatrix}\)

548.

Find the derivative of \(\sqrt[3]{(3x^{3} + 1}\) with respect to x.

A.

\(\frac{3x}{3(3x^{3} + 1)}\)

B.

\(\frac{3x^{2}}{\sqrt[3]{(3x^{3} + 1)^{2}}}\)

C.

\(\frac{3x}{\sqrt[3]{3x^{2} + 1}}\)

D.

\(\frac{3x^{2}}{3(3x^{2} + 1)^{2}}\)

Correct answer is B

\(y = \sqrt[3]{3x^{3} + 1}  = (3x^{3} + 1)^{\frac{1}{3}}\)

Let u = \(3x^{3} + 1\); y = \(u^{\frac{1}{3}}\)

\(\frac{\mathrm d y}{\mathrm d x} = (\frac{\mathrm d y}{\mathrm d u})(\frac{\mathrm d u}{\mathrm d x})\)

\(\frac{\mathrm d y}{\mathrm d u} = \frac{1}{3}u^{\frac{-2}{3}}\)

\(\frac{\mathrm d u}{\mathrm d x} = 9x^{2}\)

\(\frac{\mathrm d y}{\mathrm d x} = (\frac{1}{3}(3x^{3} + 1)^{\frac{-2}{3}})(9x^{2})\)

= \(\frac{3x^{2}}{\sqrt[3]{(3x^{3} + 1)^{2}}}\) 

549.

If \(\frac{x + P}{(x - 1)(x - 3)} = \frac{Q}{x - 1} + \frac{2}{x - 3}\), find the value of (P + Q)

A.

-2

B.

-1

C.

0

D.

1

Correct answer is C

\(\frac{x + P}{(x-1)(x-3)} = \frac{Q}{x-1} + \frac{2}{x-3}\)

\(\frac{x + P}{(x-1)(x-3)} = \frac{Q(x-3) + 2(x-1)}{(x-1)(x-3)}\)

Comparing LHS and RHS of the equation, we have

\(x + P = Qx - 3Q + 2x -2\)

\(P = -3Q - 2\)

\(Q + 2 = 1 \implies Q = 1 - 2 = -1\)

\(P = -3(-1) - 2 = 3 - 2 = 1\)

\(P + Q = 1 + (-1) = 0\)

550.

A box contains 5 red and k blue balls. A ball is selected at random from the box. If the probability of selecting a blue ball is \(\frac{2}{3}\), find the value of k

A.

5

B.

6

C.

8

D.

10

Correct answer is D

\(p(blue) = \frac{\text{no of blue balls}}{\text{total no of balls}}\)

= \(\frac{2}{3} = \frac{k}{k + 5}\)

\(3k = 2(k + 5)  \implies 3k = 2k + 10\)

\(3k - 2k = k = 10\)