x\(^2\) - 6x - 5
x\(^2\) - 6x + 5
x\(^2\) - 6x - 3
x\(^2\) - 6x + 7
Correct answer is D
dy/dx = 2x - 6
y = ∫ 2x - 6
y = \(\frac{2x^2}{2} - 6 + c\)
y = x\(^2\) - 6x + c
passes through (1,2)
2 = 1\(^2\) - 6(1) + c
2 = 1 - 6 + c
c = 7
y = x\(^2\) - 6x + c
y = x\(^2\) - 6x + 7
(\(\frac{-1}{4}\), \(\frac{3}{4}\))
(\(\frac{1}{4}\), \(\frac{3}{4}\)
(\(\frac{-1}{2}\), \(\frac{3}{2}\))
(\(\frac{-1}{2}\), \(\frac{-3}{2}\))
Correct answer is B
2x\(^2\) + 2y\(^2\) - x - 3y - 41
standard equation of circle
(x-a)\(^2\) + (x-b)\(^2\) = r\(^2\)
General form of equation of a circle.
x\(^2\) + y\(^2\) + 2gx + 2fy + c = 0
a = -g, b = -f., r2 = g2 + f2 - c
the centre of the circle is (a,b)
comparing the equation with the general form of equation of circle.
2x\(^2\) + 2y\(^2\) - x - 3y - 41
= x\(^2\) + y\(^2\) + 2gx + 2fy + c
2x\(^2\) + 2y\(^2\) - x - 3y - 41 = 0
divide through by 2
g = \(\frac{-1}{4}\) ; 2g = \(\frac{-1}{2}\)
f = \(\frac{-3}{4}\) ; 2f = \(\frac{-3}{2}\)
a = -g → - \(\frac{-1}{4}\) ; = \(\frac{1}{4}\)
b = -f → - (\frac{-3}{4}\) = (\frac{3}{4}\)
therefore the centre is (\(\frac{1}{4}\), \(\frac{3}{4}\))
0.06
0.22
0.78
0.80
Correct answer is C
No explanation has been provided for this answer.
Find the range of values of x for which 2x\(^2\) + 7x - 15 ≥ 0.
x ≤ -5 or x ≥ \(\frac{3}{2}\)
x ≥ -5 or x ≤\(\frac{3}{2}\)
-5 ≤ x ≤ \(\frac{3}{5}\)
\(\frac{3}{5}\) ≤ x ≤ -5
Correct answer is A
2x\(^2\) + 7x - 15 ≥ 0
2x\(^2\) -3x + 10x - 15 ≥ 0
x(2x - 3) + 5(2x - 3) ≥ 0
(x+5)(2x-3) ≥ 0
the points on x-axis where the graph ≥ 0
x ≤ -5 or x ≥ \(\frac{3}{2}\)
Solve: 4sin\(^2\)θ + 1 = 2, where 0º < θ < 180º
60º 0r 120º
30º 0r 150º
30º 0r 120º
60º 0r 150º
Correct answer is B
4sin\(^2\)θ + 1 = 2
4sin\(^2\)θ = 2 - 1
4sin\(^2\)θ = 1
\(\sqrt sin^2θ\) = \(\sqrt \frac{1}{4}\)
sinθ = \(\frac{1}{2}\)
θ = \(sin^{-1} \frac{1}{2}\)
θ = 30º 0r 150º