Processing math: 92%

WAEC Further Mathematics Past Questions & Answers - Page 10

46.

The gradient of a function at any point (x,y) 2x - 6. If the function passes through (1,2), find the function.

A.

x2 - 6x - 5

B.

x2 - 6x + 5

C.

x2 - 6x - 3

D.

x2 - 6x + 7

Correct answer is D

dy/dx = 2x - 6

y = ∫ 2x - 6

y = 2x226+c
y = x2 - 6x + c
passes through (1,2)
2 = 12 - 6(1) + c
2 = 1 - 6 + c
c = 7
y = x2 - 6x + c

y = x2 -  6x + 7

47.

The equation of a circle is given as 2x2 + 2y2 - x - 3y - 41 = 0. Find the coordinates of its centre.

A.

(14, 34)

B.

(14, 34

C.

(12, 32)

D.

(12, 32)

Correct answer is B

2x2 + 2y2 - x - 3y - 41

standard equation of circle
(x-a)2 + (x-b)2 = r2
General form of equation of a circle.
x2 + y2 + 2gx + 2fy + c = 0
a = -g, b = -f., r2 = g2 + f2 - c
the centre of the circle is (a,b)
comparing the equation with the general form of equation of circle.
2x2 + 2y2 - x - 3y - 41

= x2 + y2 + 2gx + 2fy + c
2x2 + 2y2 - x - 3y - 41 = 0
divide through by 2

g = 14 ; 2g = 12

f = 34 ; 2f = 32

a = -g  → - 14 ; = 14

b = -f → - (\frac{-3}{4}\) = (\frac{3}{4}\)

therefore the centre is (14, 34)

49.

Find the range of values of x for which 2x2 + 7x - 15 ≥ 0.

A.

x ≤ -5 or x ≥ 32

B.

x ≥ -5 or x ≤32

C.

-5 ≤ x ≤ 35

D.

35 ≤ x ≤ -5

Correct answer is A

2x2 + 7x - 15 ≥ 0

2x2 -3x + 10x - 15 ≥ 0
x(2x - 3) + 5(2x - 3) ≥ 0
(x+5)(2x-3) ≥ 0
the points on x-axis where the graph ≥ 0

x ≤ -5 or x ≥ 32

50.

Solve: 4sin2θ + 1 = 2, where 0º < θ < 180º

A.

60º 0r 120º

B.

30º 0r 150º

C.

30º 0r 120º

D.

60º 0r 150º

Correct answer is B

4sin2θ + 1 = 2

4sin2θ  = 2 - 1

4sin2θ = 1

\sqrt sin^2θ = \sqrt \frac{1}{4}

sinθ = \frac{1}{2}

θ = sin^{-1} \frac{1}{2}

θ = 30º 0r 150º