JAMB Mathematics Past Questions & Answers - Page 261

1,301.

\(\begin{array}{c|c} x & 2 & 4 & 6 & 8\\ \hline f & 4 & y & 6 & 5 \end{array}\)
If the mean of the above frequency distribution is 5.2, find y

A.

2, 1

B.

1, 2

C.

1, 5

D.

5, 2

Correct answer is C

Mean \(\bar{x}\) = \(\frac{\sum fx}{\sum f}\)

= \(\frac{5.2}{1}\)

= \(\frac{8 + 4y + 36 + 40}{4 + y + 6 + 5}\)

= \(\frac{5.2}{1}\)

= \(\frac{84 + 4y}{15 + y}\)

= 5.2(15 + y)

= 84 + 4y

= 5.2 x 15 + 5.2y

= 84 + 4y

= 78 + 5.2y

= 84 = 4y

= 5.2y - 4y

= 84 - 78

1.2y = 6

y = \(\frac{6}{1.2}\)

= \(\frac{60}{12}\)

= 5

1,303.

Evaluate the integral \(\int^{\frac{\pi}{4}}_{\frac{\pi}{12}} 2 \cos 2x \mathrm {d} x\)

A.

-\(\frac{1}{2}\)

B.

-1

C.

\(\frac{1}{2}\)

D.

1

Correct answer is C

\(\int_{\frac{\pi}{12}} ^{\frac{\pi}{4}} 2 \cos 2x \mathrm {d} x\)

= \([\frac{2 \sin 2x}{2}]|_{\frac{\pi}{12}} ^{\frac{\pi}{4}}\)

= \(\sin 2x |_{\frac{\pi}{12}} ^{\frac{\pi}{4}}\)

= \(\sin 2(\frac{\pi}{4}) - \sin 2(\frac{\pi}{12})\)

= \(\sin \frac{\pi}{2} - \sin \frac{\pi}{6}\)

= \(1 - \frac{1}{2} = \frac{1}{2}\)

1,304.

A student blows a balloon and its volume increases at a rate of \(\pi\)(20 - t2)cm3S-1 after t seconds. If the initial volume is 0 cm3, find the volume of the balloon after 2 seconds

A.

37.00\(\pi\)

B.

37.33\(\pi\)

C.

40.00\(\pi\)

D.

42.67\(\pi\)

Correct answer is B

\(\frac{dv}{dt}\) = \(\pi\)(20 - t2)cm2S-1

\(\int\)dv = \(\pi\)(20 - t2)dt

V = \(\pi\) \(\int\)(20 - t2)dt

V = \(\pi\)(20 \(\frac{t}{3}\) - t3) + c

when c = 0, V = (20t - \(\frac{t^3}{3}\))

after t = 2 seconds

V = \(\pi\)(40 - \(\frac{8}{3}\)

= \(\pi\)\(\frac{120 - 8}{3}\)

= \(\frac{112}{3}\)

= 37.33\(\pi\)

1,305.

Obtain a maximum value of the function f(x) x3 - 12x + 11

A.

-5

B.

-2

C.

2

D.

27

Correct answer is D

f(x) = x3 - 12x + 11

\(\frac{df(x)}{dx)}\) = 3x2 - 12 = 0

∴ 3x2 - 12 = 0 \(\to\) x2m = 4

x = \(\pm\)2, f(+2) = 8 - 24 + 11 = -15

= f(-2) = (-8) + 24 + 11

= 35 - 8 = 27

∴ maximum value = 27