2, 1
1, 2
1, 5
5, 2
Correct answer is C
Mean \(\bar{x}\) = \(\frac{\sum fx}{\sum f}\)
= \(\frac{5.2}{1}\)
= \(\frac{8 + 4y + 36 + 40}{4 + y + 6 + 5}\)
= \(\frac{5.2}{1}\)
= \(\frac{84 + 4y}{15 + y}\)
= 5.2(15 + y)
= 84 + 4y
= 5.2 x 15 + 5.2y
= 84 + 4y
= 78 + 5.2y
= 84 = 4y
= 5.2y - 4y
= 84 - 78
1.2y = 6
y = \(\frac{6}{1.2}\)
= \(\frac{60}{12}\)
= 5
216o
108o
68o
62o
Correct answer is D
H will represent \(\frac{108}{630}\) x \(\frac{360^o}{1}\) ≈ 62°
Evaluate the integral \(\int^{\frac{\pi}{4}}_{\frac{\pi}{12}} 2 \cos 2x \mathrm {d} x\)
-\(\frac{1}{2}\)
-1
\(\frac{1}{2}\)
1
Correct answer is C
\(\int_{\frac{\pi}{12}} ^{\frac{\pi}{4}} 2 \cos 2x \mathrm {d} x\)
= \([\frac{2 \sin 2x}{2}]|_{\frac{\pi}{12}} ^{\frac{\pi}{4}}\)
= \(\sin 2x |_{\frac{\pi}{12}} ^{\frac{\pi}{4}}\)
= \(\sin 2(\frac{\pi}{4}) - \sin 2(\frac{\pi}{12})\)
= \(\sin \frac{\pi}{2} - \sin \frac{\pi}{6}\)
= \(1 - \frac{1}{2} = \frac{1}{2}\)
37.00\(\pi\)
37.33\(\pi\)
40.00\(\pi\)
42.67\(\pi\)
Correct answer is B
\(\frac{dv}{dt}\) = \(\pi\)(20 - t2)cm2S-1
\(\int\)dv = \(\pi\)(20 - t2)dt
V = \(\pi\) \(\int\)(20 - t2)dt
V = \(\pi\)(20 \(\frac{t}{3}\) - t3) + c
when c = 0, V = (20t - \(\frac{t^3}{3}\))
after t = 2 seconds
V = \(\pi\)(40 - \(\frac{8}{3}\)
= \(\pi\)\(\frac{120 - 8}{3}\)
= \(\frac{112}{3}\)
= 37.33\(\pi\)
Obtain a maximum value of the function f(x) x3 - 12x + 11
-5
-2
2
27
Correct answer is D
f(x) = x3 - 12x + 11
\(\frac{df(x)}{dx)}\) = 3x2 - 12 = 0
∴ 3x2 - 12 = 0 \(\to\) x2m = 4
x = \(\pm\)2, f(+2) = 8 - 24 + 11 = -15
= f(-2) = (-8) + 24 + 11
= 35 - 8 = 27
∴ maximum value = 27