-\(\frac{1}{2}\)
-1
\(\frac{1}{2}\)
1
Correct answer is C
\(\int_{\frac{\pi}{12}} ^{\frac{\pi}{4}} 2 \cos 2x \mathrm {d} x\)
= \([\frac{2 \sin 2x}{2}]|_{\frac{\pi}{12}} ^{\frac{\pi}{4}}\)
= \(\sin 2x |_{\frac{\pi}{12}} ^{\frac{\pi}{4}}\)
= \(\sin 2(\frac{\pi}{4}) - \sin 2(\frac{\pi}{12})\)
= \(\sin \frac{\pi}{2} - \sin \frac{\pi}{6}\)
= \(1 - \frac{1}{2} = \frac{1}{2}\)