JAMB Mathematics Past Questions & Answers - Page 241

1,201.

The cost of dinner for a group of students is partly constant and partly varies directly as the number of students. If the cost is N74.00 when the number of is 20 and N96.00 when the number is 30, find the cost when there are 15 students

A.

N68.50

B.

N63.00

C.

N60.00

D.

N52.00

Correct answer is B

C = a + kS. If C = 74, S = 20

C = 96, S = 30, C= ? S = 15

74 = a + 20k......(1)

96 = a + 30k......(2)

subtract equation (1) from (2)

96 = a + 30k
-
74 = a + 20k
--------------
22 = 10k

k = 2.2

find a

74 = a + 44

a = 30

C = 30 + 2.2S

when S = 15, C = 30 + 2.2 x 15

= 30 + 33

= N63

1,202.

Make R the subject of the fomula S = \(\sqrt{\frac{2R + T}{2RT}}\)

A.

R = \(\frac{T}{(TS^2 + 1)}\)

B.

R = \(\frac{T}{2(TS^2 - 2)}\)

C.

R = \(\frac{T}{2(TS^2 + 1)}\)

D.

R = \(\frac{R}{2(TS^2 + 1)}\)

Correct answer is B

S = \(\sqrt{\frac{2R + T}{2RT}}\)

Squaring both sides, 

\(S^{2} = \frac{2R + T}{2RT}\)

\(S^{2} (2RT) = 2R + T\)

\(2S^{2} RT - 2R = T\)

\(R = \frac{T}{2TS^{2}  - 2}\)

= \(\frac{T}{2(TS^{2} - 1)}

1,203.

What are the values of y which satisfy the equation \(9^{y} - 4 \times 3^{y} + 3 = 0\) ?

A.

-1 and 0

B.

-1 and 1

C.

1 and 3

D.

0 and 1

Correct answer is D

\(9^{y} - 4 \times 3^{y} + 3 = 0\)

\(\equiv (3^{2})^{y} - 4 \times 3^{y} + 3 = 0\)

\((3^{y})^{2} - 4 \times 3^{y} + 3 = 0\)

Let \(3^{y}\) be r. Then,

\(r^{2} - 4r + 3 = 0\)

Solving the equation, 

\(r^{2} - 3r - r + 3 = 0\)

\(r(r - 3) - 1(r - 3) = 0\)

\((r - 3)(r - 1) = 0\)

\(\therefore \text{r = 3 or 1}\)

Recall, \(3^{y} = r\)

\(3^{y} = 3 = 3^{1} \text{ or } 3^{y} = 1 = 3^{0}\)

\(\implies \text{y = 1 or 0}\)

1,204.

Find p in terms of q if \(\log_{3} p + 3\log_{3} q = 3\)

A.

(\(\frac{3}{q}\))3

B.

(\(\frac{q}{3}\))\(\frac{1}{3}\)

C.

(\(\frac{q}{3}\))3

D.

(\(\frac{3}{q}\))\(\frac{1}{3}\)

Correct answer is A

\(\log_{3} p + 3\log_{3} q = 3\)

\(\log_{3} p + \log_{3} q^{3} = 3\)

\(\implies \log_{3} (pq^{3}) = 3\)

\(pq^{3} = 3^{3} = 27\)

\(\therefore p = \frac{27}{q^{3}}\)

= \((\frac{3}{q})^{3}\)

1,205.

Simplify \(4 - \frac{1}{2 - \sqrt{3}}\)

A.

2\(\sqrt{3}\)

B.

-2 - \(\sqrt{3}\)

C.

-2 + \(\sqrt{3}\)

D.

2 - \(\sqrt{3}\)

Correct answer is D

\(4 - \frac{1}{2 - \sqrt{3}} = \frac{4(2 - \sqrt{3}) - 1}{2 - \sqrt{3}}\)

= \(\frac{8 - 4\sqrt{3} - 1}{2 - \sqrt{3}}\)

= \(\frac{7 - 4\sqrt{3}}{2 - \sqrt{3}}\)

Rationalizing,

\((\frac{7 - 4\sqrt{3}}{2 - \sqrt{3}}) (\frac{2 + \sqrt{3}}{2 + \sqrt{3}})\)

= \(\frac{14 + 7\sqrt{3} - 8\sqrt{3} - 12}{4 + 2\sqrt{3} - 2\sqrt{3} - 3}\)

= \(\frac{2 - \sqrt{3}}{1} = 2 - \sqrt{3}\)