Make R the subject of the fomula S = \(\sqrt{\frac{2R + T}{2RT}}\)

A.

R = \(\frac{T}{(TS^2 + 1)}\)

B.

R = \(\frac{T}{2(TS^2 - 2)}\)

C.

R = \(\frac{T}{2(TS^2 + 1)}\)

D.

R = \(\frac{R}{2(TS^2 + 1)}\)

Correct answer is B

S = \(\sqrt{\frac{2R + T}{2RT}}\)

Squaring both sides, 

\(S^{2} = \frac{2R + T}{2RT}\)

\(S^{2} (2RT) = 2R + T\)

\(2S^{2} RT - 2R = T\)

\(R = \frac{T}{2TS^{2}  - 2}\)

= \(\frac{T}{2(TS^{2} - 1)}