-1 and 0
-1 and 1
1 and 3
0 and 1
Correct answer is D
\(9^{y} - 4 \times 3^{y} + 3 = 0\)
\(\equiv (3^{2})^{y} - 4 \times 3^{y} + 3 = 0\)
\((3^{y})^{2} - 4 \times 3^{y} + 3 = 0\)
Let \(3^{y}\) be r. Then,
\(r^{2} - 4r + 3 = 0\)
Solving the equation,
\(r^{2} - 3r - r + 3 = 0\)
\(r(r - 3) - 1(r - 3) = 0\)
\((r - 3)(r - 1) = 0\)
\(\therefore \text{r = 3 or 1}\)
Recall, \(3^{y} = r\)
\(3^{y} = 3 = 3^{1} \text{ or } 3^{y} = 1 = 3^{0}\)
\(\implies \text{y = 1 or 0}\)