2\(\sqrt{3}\)
-2 - \(\sqrt{3}\)
-2 + \(\sqrt{3}\)
2 - \(\sqrt{3}\)
Correct answer is D
\(4 - \frac{1}{2 - \sqrt{3}} = \frac{4(2 - \sqrt{3}) - 1}{2 - \sqrt{3}}\)
= \(\frac{8 - 4\sqrt{3} - 1}{2 - \sqrt{3}}\)
= \(\frac{7 - 4\sqrt{3}}{2 - \sqrt{3}}\)
Rationalizing,
\((\frac{7 - 4\sqrt{3}}{2 - \sqrt{3}}) (\frac{2 + \sqrt{3}}{2 + \sqrt{3}})\)
= \(\frac{14 + 7\sqrt{3} - 8\sqrt{3} - 12}{4 + 2\sqrt{3} - 2\sqrt{3} - 3}\)
= \(\frac{2 - \sqrt{3}}{1} = 2 - \sqrt{3}\)