2\(\sqrt{3}\)
-2 - \(\sqrt{3}\)
-2 + \(\sqrt{3}\)
2 - \(\sqrt{3}\)
Correct answer is D
\(4 - \frac{1}{2 - \sqrt{3}} = \frac{4(2 - \sqrt{3}) - 1}{2 - \sqrt{3}}\)
= \(\frac{8 - 4\sqrt{3} - 1}{2 - \sqrt{3}}\)
= \(\frac{7 - 4\sqrt{3}}{2 - \sqrt{3}}\)
Rationalizing,
\((\frac{7 - 4\sqrt{3}}{2 - \sqrt{3}}) (\frac{2 + \sqrt{3}}{2 + \sqrt{3}})\)
= \(\frac{14 + 7\sqrt{3} - 8\sqrt{3} - 12}{4 + 2\sqrt{3} - 2\sqrt{3} - 3}\)
= \(\frac{2 - \sqrt{3}}{1} = 2 - \sqrt{3}\)
Evaluate, correct to four significant figures, (573.06 x 184.25). ...
Given that Y is 20cm on a bearing of 300\(^o\) from x, how far south of y is x?...
If \(\sqrt{x^2 + 9}\) = x + 1, solve for x...
A polynomial in x whose roots are 4/3 and -3/5 is? ...
Simplify \(\frac{9^{-\frac{1}{2}}}{27^{\frac{2}{3}}}\) ...
Find the derivative of \(\frac {\sin\theta}{\cos\theta}\)...