13
5
13/5
12/5
5/12
Correct answer is D
cosθ=513
⟹ In the right- angled triangle, with an angle θ, the adjacent side to θ = 5 and the hypotenuse = 13.
∴
opp^2 = 169 - 25 = 144 \implies opp = \sqrt{144}
= 12.
\tan \theta = \frac{opp}{adj} = \frac{12}{5}
If 8^{x+1}=\frac{1}{4}, find x...
Find the values of x which satisfy the equation 16x - 5 x 4x + 4 = 0...
Given \sin 58° = \cos p°, find p....
Solve for x and y respectively in the simultaneous equations -2x - 5y = 3. x + 3y = 0...
Integrate \frac{1 + x}{x^{3}} \mathrm d x...