\(\frac{1}{3}\)
\(\frac{4}{9}\)
\(\frac{5}{9}\)
\(1\)
Correct answer is A
Differentiate distance twice to get the acceleration and then equate to get p.
\(s = 7 + pt^{3} + t^{2}\)
\(\frac{\mathrm d s}{\mathrm d t} = v(t) = 3pt^{2} + 2t\)
\(\frac{\mathrm d v}{\mathrm d t} = a(t) = 6pt + 2\)
\(a(3) = 6p(3) + 2 = 8 \implies 18p = 8 - 2 = 6\)
\(p = \frac{6}{18} = \frac{1}{3}\)
If \(log_{y}\frac{1}{8}\) = 3, find the value of y....
Calculate the mean deviation of 1, 2, 3, 4, 5, 5, 6, 7, 8, 9. ...
For what values of x is \(\frac{x^{2} - 9x + 18}{x^{2} + 2x - 35}\) undefined?...
In how many ways can the letters of the word 'ELECTIVE' be arranged? ...
Evaluate \(\int_{1}^{2} \frac{4}{x^{3}} \mathrm {d} x\)...
If \(P = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}\), find \((P^{2} + P)\)....
The sum, \(S_{n}\), of a sequence is given by \(S_{n} = 2n^{2} - 5\). Find the 6th term...