\(x^{2} - y^{2} - 6x + 16y + 23 = 0\)
\(x^{2} + y^{2} + 6x + 16y - 23 = 0\)
\(x^{2} + y^{2} + 6x - 16y + 23 = 0\)
\(x^{2} + y^{2} - 6x + 16y + 23 = 0\)
Correct answer is B
Equation of a circle: \((x - a)^{2} + (y - b)^{2} = r^{2}\)
where (a, b) and r are the coordinates of the centre and radius respectively.
Given : \((a, b) = (-3, -8); r = 4\sqrt{6}\)
\((x - (-3))^{2} + (y - (-8))^{2} = (4\sqrt{6})^{2}\)
\(x^{2} + 6x + 9 + y^{2} + 16y + 64 = 96\)
\(x^{2} + y^{2} + 6x + 16y + 9 + 64 - 96 = 0\)
\(\implies x^{2} + y^{2} + 6x + 16y - 23 = 0\)
Simplify \(2\log_{3} 8 - 3\log_{3} 2\)...
Find the value of p for which \(x^{2} - x + p\) becomes a perfect square. ...
Evaluate \(\int^1_0 x(x^2-2)^2 dx\)...
Given that \(f : x \to \frac{2x - 1}{x + 2}, x \neq -2\), find \(f^{-1}\), the inverse of f ...
Simplify \(\sqrt[3]{\frac{8}{27}} - (\frac{4}{9})^{-\frac{1}{2}}\)...
A binary operation ♦ is defined on the set R, of real numbers by \(a ♦ b = \fr...