\(x = 3, -2\)
\(x = 4, \frac{-2}{3}\)
\(x = -4, \frac{3}{2}\)
\(x = 4, \frac{-3}{2}\)
Correct answer is D
\(\begin{vmatrix} 1+2x & -1 \\ 6 & 3-x \end{vmatrix} = -3 \implies (1+2x)(3-x) - (-6) = -3\)
\(3 - x + 6x - 2x^{2} + 6 = -3\)
\(-2x^{2} + 5x + 3 + 6 + 3 = 0\)
Multiplying through with -1,
\(2x^{2} - 5x -12 = 0\)
\((2x + 3)(x - 4) = 0 \implies x = \frac{-3}{2} , 4\)
Find the unit vector in the direction of \(-2i + 5j\)....
Simplify \(\frac{\sqrt{3}}{\sqrt{3} -1} + \frac{\sqrt{3}}{\sqrt{3} + 1}\)...
Find the coordinates of the centre of the circle \(4x^{2} + 4y^{2} - 5x + 3y - 2 = 0\)....
Differentiate \(\frac{x}{x + 1}\) with respect to x...
Find the equation of a circle with centre (-3, -8) and radius \(4\sqrt{6}\)...
If ( 1- 2x)\(^4\) = 1 + px + qx\(^2\) - 32x\(^3\) + 16\(^4\), find the value of (q - p)...