A stone is thrown vertically upward and distance, S metre...
A stone is thrown vertically upward and distance, S metres after t seconds is given by S = 12t + \(\frac{5}{2t^2}\) - t\(^3\).
Calculate the maximum height reached.
418.5m
56.0m
31.5m
30.0m
Correct answer is C
S = 12t + \(\frac{5}{2t^2}\) - t\(^3\);
ds/dt = 12 + 5t - 3t\(^2\)
At max height ds/dt = 0
i.e 12 + 5t - 3t\(^2\)
(3t + 4)(t -3) = 0;
t = -4/3 or 3
Hmax = 12[3] + \(\frac{5}{2[3]^2}\) - 3\(^3\)
= 36 + 45/2 - 27
= 31.5m
Simplify \(\frac{\log_{5} 8}{\log_{5} \sqrt{8}}\)....
Consider the following statement: x: All wrestlers are strong y: Some wresters are not weightl...
Age in years 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 Frequency 6 8 14 10 12 ...
Given that \(x * y = \frac{x + y}{2}, x \circ y = \frac{x^{2}}{y}\) and \((3 * b) \circ&nb...
Given that \(2^{x} = 0.125\), find the value of x....
Evaluate \(\log_{10}(\frac{1}{3} + \frac{1}{4}) + 2\log_{10} 2 + \log_{10} (\frac{3}{7})\)...