If the points (-1, t -1), (t, t - 3) and (t - 6, 3) lie o...
If the points (-1, t -1), (t, t - 3) and (t - 6, 3) lie on the same straight line, find the values of t.
t = -2 and 3
t = 2 and -3
t = 2 and 3
t = -2 and -3
Correct answer is C
For collinear points (points on the same line), the slopes are equal for any 2 points on the line.
Given (-1, t - 1), (t, t - 3), (t - 6, 3),
\(slope = \frac{(t-3) - (t-1)}{t - (-1)} = \frac{3 - (t-3)}{(t-6) - t} = \frac{3 - (t-1)}{(t-6) - (-1)}\)
Taking any two of the equations above, solve for t.
\(\frac{t - 3 - t + 1}{t + 1} = \frac{6 -t}{-6}\)
\(12 = (6 - t)(t + 1)\)
\(-t^{2} + 5t + 6 - 12 = 0 \implies t^{2} - 5t + 6 = 0\)
Solving, we have t = 2 and 3.
Given that \(P = \begin{pmatrix} 4 & 9 \end{pmatrix}\) and \(Q = \begin{pmatrix} -1 & -2 \\ ...
Find the equation of the line passing through (0, -1) and parallel to the y- axis. ...
If \(8^{x} ÷ (\frac{1}{4})^{y} = 1\) and \(\log_{2}(x - 2y) = 1\), find the value of (x ...
If \(2\log_{4} 2 = x + 1\), find the value of x....
Age(in years) 1 - 5 6 - 10 11 - 15 Frequency 3 5 2 Calculate the standard de...
Given \(\sin \theta = \frac{\sqrt{3}}{2}, 0° \leq \theta \leq 90°\), find \(\tan 2\the...
In the diagram, a ladder PS leaning against a vertical wall PR makes angle x° with the horizonta...
Factorize completely: \(x^{2} + x^{2}y + 3x - 10y + 3xy - 10\)....