5
\(\frac{1}{2}\sqrt{15}\)
\(\frac{1}{2}\sqrt{85}\)
\(\sqrt{85}\)
Correct answer is C
The equation of a circle is given as \((x - a)^{2} + (y - b)^{2} = r^{2}\).
Expanding, we have: \(x^{2} - 2ax + a^{2} + y^{2} - 2by + b^{2} = r^{2}\)
\(x^{2} + y^{2} - 2ax - 2by + a^{2} + b^{2} = r^{2}\)
Comparing with the equation, \(x^{2} + y^{2} - 8x + 9y = -15\), we have
\(2a = 8; 2b = -9; r^{2} - a^{2} - b^{2} = -15\)
\(a = 4; b = \frac{-9}{2}\)
\(\therefore r^{2} = -15 + 4^{2} + (\frac{-9}{2})^{2}\)
= \(-15 + 16 + \frac{81}{4} = \frac{85}{4}\)
\(r = \sqrt{\frac{85}{4} = \frac{1}{2}\sqrt{85}\)
Solve the inequality \(2x^{2} + 5x - 3 \geq 0\)....
If \(\begin{vmatrix} 1+2x & -1 \\ 6 & 3-x \end{vmatrix} = -3 \), find the values of x....
Simplify \(8^{n} \times 2^{2n} \div 4^{3n}\)...
Evaluate \(\log_{10}(\frac{1}{3} + \frac{1}{4}) + 2\log_{10} 2 + \log_{10} (\frac{3}{7})\)...
Find the derivative of \(\sqrt[3]{(3x^{3} + 1}\) with respect to x....
A stone is thrown vertically upward and distance, S metres after t seconds is given by S = 12t ...