\(\frac{1}{576}\)
\(\frac{55}{576}\)
\(\frac{77}{576}\)
\(\frac{167}{576}\)
Correct answer is D
\(P(Jide) = \frac{1}{12}; P(\text{not Jide}) = \frac{11}{12}\)
\(P(Atu) = \frac{1}{6}; P(\text{not Atu}) = \frac{5}{6}\)
\(P(Obu) = \frac{1}{8}; P(\text{not Obu}) = \frac{7}{8}\)
\(P(\text{only one of them}) = P(\text{Jide not Atu not Obu}) + P(\text{Atu not Jide not Obu}) + P(\text{Obu not Jide not Atu})\)
= \((\frac{1}{12} \times \frac{5}{6} \times \frac{7}{8}) + (\frac{1}{6} \times \frac{11}{12} \times \frac{7}{8}) + (\frac{1}{8} \times \frac{11}{12} \times \frac{5}{6})\)
= \(\frac{35}{576} + \frac{77}{576} + \frac{55}{576}\)
= \(\frac{167}{576}\)
Calculate the variance of \(\sqrt{2}\), (1 + \(\sqrt{2}\)) and (2 + \(\sqrt{2}\)) ...
Find the minimum value of \(y = 3x^{2} - x - 6\)....
Evaluate \(\int^1_0 x(x^2-2)^2 dx\)...
Factorize completely: \(x^{2} + x^{2}y + 3x - 10y + 3xy - 10\)....
Simplify \(\frac{1}{3}\) log8 + \(\frac{1}{3}\) log 64 - 2 log6...
Evaluate \(\log_{10}(\frac{1}{3} + \frac{1}{4}) + 2\log_{10} 2 + \log_{10} (\frac{3}{7})\)...
Given that \(x * y = \frac{x + y}{2}, x \circ y = \frac{x^{2}}{y}\) and \((3 * b) \circ&nb...