\(\frac{2x}{x - 3}, x \neq 3\)
\(\frac{2x}{x + 3}, x \neq -3\)
\(\frac{3x}{x - 3}, x \neq 3\)
\(\frac{3x}{x + 3}, x \neq -3\)
Correct answer is A
From the rules of binary operation, \(x * e = x\)
\(\implies x * e = 3x + 3e - xe = x\)
\(3e - xe = x - 3x = -2x\)
\(e = \frac{2x}{x - 3}, x \neq 3\)