Physics questions and answers

Physics Questions and Answers

If you want to learn more about the nature and properties of matter and energy or you're simply preparing for a Physics exam, these Physics past questions and answers are ideal for you.

91.

What is the amount of heat required to raise the temperature of a 0.02 kg of ice cube from \(-10^oC\) to \(10^oC\) ?

[specific latent heat of fusion of ice = 3.34 x \(10^5\)  \(Jkg^-1\), Specific heat capacity of water = 4200 \(Jkg^-1\) \(k^-1\)  

Specific heat capacity of ice = 2100 \(Jkg^-1\) \(k^-1\)

A.

6680 J

B.

1680 J

C.

7520 J

D.

7940 J

Correct answer is D

Quantity of heat required to raise the temperature of the ice cube from \(-10^oC\) to \(0^oC\)
⇒H=mc►ø = 0.02 × 2100 × 0 -(-10)

⇒ H = 0.02 × 2100 × (0 + 10) = 0.02 × 2100 × 10

⇒ H = 420 J

quantity of heat required to melt ice at \(0^oC\)

⇒ H = mL = 0.02 × 3.34 × \(10^5\)

⇒H=6680 j

Quantity of heat required to raise the temperature of the melted ice cube (water) from \(0^oC\) to \(-10^oC\)

⇒H=mc►ø = 0.02 × 4200 × (10-0)

⇒H = 0.02 × 4200 × 10

⇒H = 840j

;420 + 6680 + 840 = 7940 j

 

92.

A parallel plate capacitor separated by an air gap is made of \(0.8m^2\) tin plates and 20 mm apart. It is connected to 120 V battery. What is the charge on each plate?
Take \(ε_o\) = \(8.85×10^-12 Fm^-1\)

A.

3.54nC

B.

42.5nC

C.

35.4nC

D.

4.25nC

Correct answer is B

A= \(0.8m^2\)    d= 20mm =\(\frac{20}{1000}\) = 0.02m

v =120v;  \(ε_oA\)= \(8.85 × 10^-12 fm^-1\)

C = \(\frac{ε_oA}{d}\)

C =\(\frac{8.85 × 10^-12×0.8}{0.02}\)

C= \(3.54 × 10^-10 F\)

Q= CV

⇒  \(3.54 × 10^-10\) × 120 = \(4.25×10^-8c\)

     Q=\(42.5 × 10^-9c\)  = 42.5nC

      

93.

An air bubble of radius 4.5 cm initially at a depth of 12 m below the water surface rises to the surface. If the atmospheric pressure is equal to 10.34 m of water, the radius of the bubble just before it reaches the water surface is

A.

6.43 cm

B.

8.24 cm

C.

4.26 cm

D.

5.82 cm

Correct answer is D

\(r_1\) = 4.5cm , \( P_1\) =is the total pressure on the bubble at a depth of 12m from the surface.

\(P_1\) = 12 + 10.34 =22.34m

 \(V_1\) = \(\frac{4}{3}\)π× \(r^3_1\)

= \(\frac{4}{3}× π×{4.5^3cm^3}\)

\(P_2\) = 10.34m

\(V_2\)  = \(\frac{4}{3} {π}{r^3_2}\)

from boyles law:

\(P_1V_1\)  = \(P_2V_2\) 

⇒ 22.34× \(\frac{4}{3}× π×{4.5^3}\) = 10.34 × \(\frac{4}{3}×π×{r^3_2}\)

⇒ 22.34 × \(4.5^3\) = 10.34 × \(r^3_2\)

 \(r^3_2 = \sqrt[3]{196.88}\)

⇒ \(r_2\) = 5.82cm

94.

An air bubble of radius 4.5 cm initially at a depth of 12 m below the water surface rises to the surface. If the atmospheric pressure is equal to 10.34 m of water, the radius of the bubble just before it reaches the water surface is

A.

6.43 cm

B.

8.24 cm

C.

4.26 cm

D.

5.82 cm

Correct answer is D

\(r_1\) = 4.5cm , \( P_1\) =is the total pressure on the bubble at a depth of 12m from the surface.

\(P_1\) = 12 + 10.34 =22.34m

 \(V_1\) = \(\frac{4}{3}\)π× \(r^3_1\)

= \(\frac{4}{3}× π×{4.5^3cm^3}\)

\(P_2\) = 10.34m

\(V_2\)  = \(\frac{4}{3} {π}{r^3_2}\)

from boyles law:

\(P_1V_1\)  = \(P_2V_2\) 

⇒ 22.34× \(\frac{4}{3}× π×{4.5^3}\) = 10.34 × \(\frac{4}{3}×π×{r^3_2}\)

⇒ 22.34 × \(4.5^3\) = 10.34 × \(r^3_2\)

 \(r^3_2 = \sqrt[3]{196.88}\)

⇒ \(r_2\) = 5.82cm

95.

A 200 kg load is raised using a 110 m long lever as shown in the diagram above. The load is 10m from the pivot P. If the efficiency of the the lever is 80%, find the effort E required to lift the load.
[Take g = 10ms-2]

A.

250

B.

300

C.

450

D.

200

Correct answer is A

ε= 80%, L=200× 10 = 2000N, \(d_L\)=10m
 

\(d_E\)= 110-10 = 100m, E=?

ε = \(\frac{work done on the load}{work done by the effort}\)  × 100%

⇒  work done on load = 2000 ×10 =20,000 j


⇒ work done by effort = E × 100  = 100E

⇒ 80 =   \(\frac{20,000}{100E}\) × 100%

⇒ 80 =   \(\frac{20,000}{E}\) 

⇒ E = \(\frac{20,000}{80}\)

              ⇒  E = 250N